Self-organization in Sensor and Actor Networks / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $89.97
Usually ships in 1-2 business days
(Save 30%)
Other sellers (Hardcover)
  • All (9) from $89.97   
  • New (7) from $89.97   
  • Used (2) from $108.04   


Self-Organization in Sensor and Actor Networks explores self-organization mechanisms and methodologies concerning the efficient coordination between intercommunicating autonomous systems.Self-organization is often referred to as the multitude of algorithms and methods that organise the global behaviour of a system based on inter-system communication. Studies of self-organization in natural systems first took off in the 1960s. In technology, such approaches have become a hot research topic over the last 4-5 years with emphasis upon management and control in communication networks, and especially in resource-constrained sensor and actor networks. In the area of ad hoc networks new solutions have been discovered that imitate the properties of self-organization. Some algorithms for on-demand communication and coordination, including data-centric networking, are well-known examples.

Key features include:

  • Detailed treatment of self-organization, mobile sensor and actor networks, coordination between autonomous systems, and bio-inspired networking.
  • Overview of the basic methodologies for self-organization, a comparison to central and hierarchical control, and classification of algorithms and techniques in sensor and actor networks.
  • Explanation of medium access control, ad hoc routing, data-centric networking, synchronization, and task allocation issues.
  • Introduction to swarm intelligence, artificial immune system, molecular information exchange.
  • Numerous examples and application scenarios to illustrate the theory.

Self-Organization in Sensor and Actor Networks will prove essential reading for students of computer science and related fields; researchers working in the area of massively distributed systems, sensor networks, self-organization, and bio-inspired networking will also find this reference useful.

Read More Show Less

Product Details

Meet the Author

Dr. Falko Dressler is Assistant Professor at the Department of Computer Sciences, University of Erlangen, Germany and, since 2004, Head of the Autonomic Networking Group.  He has made many contributions in the area of quality of service in communication networks (IP, multicast, sensor networks), network security (intrusion detection, high-speed monitoring, IP traceback), ad hoc wireless sensor networks (communication paradigms, congestion control), and bio-inspired networking (lessons learnt from molecular biology to be adapted to communication networks).  His areas of expertise include distributed systems and communication networks, self-organizing autonomous sensor/actuator networks and bio-inspired networking.

Read More Show Less

Table of Contents



About the Author.

List of Abbreviations. 

I Self-Organization.

1 Introduction to Self-Organization.

1.1 Understanding self-organization.

1.2 Application scenarios for self-organization.

2 System Management and Control – A Historical Overview.

2.1 System architecture.

2.2 Management and control.

2.2.1 Centralized control.

2.2.2 Distributed systems.

2.2.3 Self-organizing systems.

3 Self-Organization – Context and Capabilities.

3.1 Complex systems.

3.2 Self-organization and emergence.

3.3 Systems lacking self-organization.

3.3.1 External control.

3.3.2 Blueprints and templates.

3.4 Self-X capabilities.

3.5 Consequences of emergent properties.

3.6 Operating self-organizing systems.

3.6.1 Asimov’s Laws of Robotics.

3.6.2 Attractors.

3.7 Limitations of self-organization.

4 Natural Self-Organization.

4.1 Development of understandings.

4.2 Examples in natural sciences.

4.2.1 Biology.

4.2.2 Chemistry.

4.3 Differentiation self-organization and bio-inspired.

4.3.1 Exploring bio-inspired.

4.3.2 Bio-inspired techniques.

4.3.3 Self-organization vs. bio-inspired.

5 Self-Organization in Technical Systems.

5.1 General applicability.

5.1.1 Autonomous systems.

5.1.2 Multi-robot systems.

5.1.3 Autonomic networking.

5.1.4 Mobile Ad Hoc Networks.

5.1.5 Sensor and Actor Networks.

5.2 Operating Sensor and Actor Networks.

6 Methods and Techniques.

6.1 Basic methods.

6.1.1 Positive and negative feedback.

6.1.2 Interactions among individuals and with the environment.

6.1.3 Probabilistic techniques.

6.2 Design paradigms for self-organization.

6.2.1 Design process.

6.2.2 Discussion of the design paradigms.

6.3 Developing nature-inspired self-organizing systems.

6.4 Modeling self-organizing systems.

6.4.1 Overview to modeling techniques.

6.4.2 Differential equation models.

6.4.3 Monte Carlo simulations.

6.4.4 Choosing the right modeling technique.

Appendix I Self-Organization – Further Reading.

II Networking Aspects: Ad Hoc and Sensor Networks.

7 Mobile Ad Hoc and Sensor Networks.

7.1 Ad hoc networks.

7.1.1 Basic properties of ad hoc networks.

7.1.2 Mobile Ad Hoc Networks.

7.2 Wireless Sensor Networks.

7.2.1 Basic properties of sensor networks.

7.2.2 Composition of single sensor nodes.

7.2.3 Communication in sensor networks.

7.2.4 Energy aspects.

7.2.5 Coverage and deployment.

7.2.6 Comparison between MANETs and WSNs.

7.2.7 Application examples.

7.3 Challenges and research issues.

7.3.1 Required functionality and constraints.

7.3.2 Research objectives.

8 Self-Organization in Sensor Networks. 

8.1 Properties and objectives.

8.2 Categorization in two dimensions.

8.2.1 Horizontal dimension.

8.2.2 Vertical dimension.

8.3 Methods and application examples.

8.3.1 Mapping with primary self-organization methods.

8.3.2 Global state.

8.3.3 Location information.

8.3.4 Neighborhood information.

8.3.5 Local state.

8.3.6 Probabilistic techniques.

9 Medium Access Control.

9.1 Contention-based protocols.

9.2 Sensor MAC.

9.2.1 Synchronized listen/sleep cycles.

9.2.2 Performance aspects.

9.2.3 Performance evaluation.

9.3 Power-Control MAC protocol.

9.4 Conclusion.

10 Ad Hoc Routing.

10.1 Overview and categorization.

10.1.1 Address-based routing vs. data-centric forwarding.

10.1.2 Classification of ad hoc routing protocols.

10.2 Principles of ad hoc routing protocols.

10.2.1 Destination Sequenced Distance Vector.

10.2.2 Dynamic Source Routing.

10.2.3 Ad Hoc on Demand Distance Vector.

10.2.4 Dynamic MANET on Demand.

10.3 Optimized route stability.

10.4 Dynamic address assignment.

10.4.1 Overview and centralized assignment.

10.4.2 Passive Duplicate Address Detection.

10.4.3 Dynamic Address Allocation.

10.5 Conclusion.

11 Data-Centric Networking.

11.1 Overview and classification.

11.1.1 Data dissemination.

11.1.2 Network-centric operation.

11.1.3 Related approaches.

11.2 Flooding, gossiping, and optimizations. 

11.2.1 Flooding.

11.2.2 Pure gossiping.

11.2.3 Optimized gossiping.

11.3 Agent-based techniques.

11.4 Directed diffusion.

11.4.1 Basic algorithm.

11.4.2 Mobility support.

11.4.3 Energy efficiency.

11.5 Data aggregation.

11.5.1 Principles and objectives.

11.5.2 Aggregation topologies.

11.6 Conclusion.

12 Clustering.

12.1 Principles of clustering.

12.1.1 Requirements and classification.

12.1.2 k-means.

12.1.3 Hierarchical clustering.

12.2 Clustering for efficient routing.

12.2.1 Low-Energy Adaptive Clustering Hierarchy.

12.2.2 Hybrid Energy-Efficient Distributed Clustering Approach.

12.3 Conclusion. 

Appendix II Networking Aspects – Further reading.

III Coordination and Control: Sensor and Actor Networks.

13 Sensor and Actor Networks.

13.1 Introduction.

13.1.1 Composition of SANETs – an example.

13.1.2 Properties and capabilities.

13.1.3 Components of SANET nodes.

13.1.4 Application examples.

13.2 Challenges and research objectives.

13.2.1 Communication and coordination.

13.2.2 Collaboration and task allocation.

13.3 Limitations.

14 Communication and Coordination.

14.1 Synchronization vs. coordination.

14.1.1 Problem statement.

14.1.2 Logical time.

14.1.3 Coordination.

14.2 Time synchronization in WSNs and SANETs.

14.2.1 Requirements and objectives.

14.2.2 Conventional approaches.

14.2.3 Algorithms for WSNs.

14.3 Distributed coordination.

14.3.1 Scalable coordination.

14.3.2 Selected algorithms.

14.3.3 Integrated sensor-actor and actor-actor coordination.

14.3.4 Problems with selfish nodes.

14.4 In-network operation and control. 

14.5 Conclusion.

15 Collaboration and Task Allocation.

15.1 Introduction to MRTA.

15.1.1 Primary objectives.

15.1.2 Classification and taxonomy.

15.2 Intentional cooperation – auction-based task allocation.

15.2.1 Open Agent Architecture.

15.2.2 MURDOCH.

15.2.3 Dynamic negotiation algorithm.

15.3 Emergent cooperation.

15.3.2 Stimulation by state.

15.4 Conclusion.

Appendix III Coordination and Control – Further reading.

IV Self-Organization Methods in Sensor and Actor Networks.

16 Self-Organization Methods – Revisited. 

16.1 Self-organization methods in SANETs.

16.2 Positive and negative feedback.

16.3 Interactions among individuals and with the environment .

16.4 Probabilistic techniques.

17 Evaluation Criteria.

17.1 Scalability.

17.2 Energy considerations.

17.2.1 Energy management.

17.2.2 Transmission power management.

17.3 Network lifetime.

17.3.1 Definition of network lifetime.

17.3.2 Scenario-based comparisons of network lifetime.

V Bio-inspired Networking.

18 Bio-inspired Systems.

18.1 Introduction and overview. 

18.1.1 Ideas and concepts.

18.1.2 Bio-inspired research fields.

18.2 Swarm Intelligence.

18.2.1 Principles of ant foraging.

18.2.2 Ant-based routing.

18.2.3 Ant-based task allocation.

18.3 Artificial Immune System.

18.3.1 Principles of the immune system.

18.3.2 Application examples.

18.4 Cellular signaling pathways.

18.4.1 Introduction to signaling pathways.

18.4.2 Applicability in SANETs.

18.5 Conclusion.

Appendix IV Bio-inspired Networking – Further reading.



Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)