Semi-Supervised Learning and Domain Adaptation in Natural Language Processing / Edition 1

Semi-Supervised Learning and Domain Adaptation in Natural Language Processing / Edition 1

by Anders Søgaard
ISBN-10:
1608459853
ISBN-13:
9781608459858
Pub. Date:
06/01/2013
Publisher:
Morgan and Claypool Publishers
ISBN-10:
1608459853
ISBN-13:
9781608459858
Pub. Date:
06/01/2013
Publisher:
Morgan and Claypool Publishers
Semi-Supervised Learning and Domain Adaptation in Natural Language Processing / Edition 1

Semi-Supervised Learning and Domain Adaptation in Natural Language Processing / Edition 1

by Anders Søgaard

Paperback

$30.0
Current price is , Original price is $30.0. You
$30.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.


Overview

This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias. This book is intended to be both readable by first-year students and interesting to the expert audience. My intention was to introduce what is necessary to appreciate the major challenges we face in contemporary NLP related to data sparsity and sampling bias, without wasting too much time on details about supervised learning algorithms or particular NLP applications. I use text classification, part-of-speech tagging, and dependency parsing as running examples, and limit myself to a small set of cardinal learning algorithms. I have worried less about theoretical guarantees ("this algorithm never does too badly") than about useful rules of thumb ("in this case this algorithm may perform really well"). In NLP, data is so noisy, biased, and non-stationary that few theoretical guarantees can be established and we are typically left with our gut feelings and a catalogue of crazy ideas. I hope this book will provide its readers with both. Throughout the book we include snippets of Python code and empirical evaluations, when relevant. Table of Contents: Introduction / Supervised and Unsupervised Prediction / Semi-Supervised Learning / Learning under Bias / Learning under Unknown Bias / Evaluating under Bias

Product Details

ISBN-13: 9781608459858
Publisher: Morgan and Claypool Publishers
Publication date: 06/01/2013
Series: Synthesis Lectures on Human Language Technologies
Pages: 103
Product dimensions: 7.30(w) x 9.20(h) x 0.30(d)
From the B&N Reads Blog

Customer Reviews