Sensors and Signal Conditioning / Edition 2

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $116.08
Usually ships in 1-2 business days
(Save 42%)
Other sellers (Hardcover)
  • All (10) from $116.08   
  • New (6) from $118.43   
  • Used (4) from $116.08   


Praise for the First Edition . . .

"A unique piece of work, a book for electronics engineering, in general, but well suited and excellently applicable also to biomedical engineering . . . I recommend it with no reservation, congratulating the authors for the job performed." -IEEE Engineering in Medicine & Biology

"Describes a broad range of sensors in practical use and some circuit designs; copious information about electronic components is supplied, a matter of great value to electronic engineers. A large number of applications are supplied for each type of sensor described . . . This volume is of considerable importance."-Robotica

In this new edition of their successful book, renowned authorities Ramon Pall's-Areny and John Webster bring you up to speed on the latest advances in sensor technology, addressing both the explosive growth in the use of microsensors and improvements made in classical macrosensors. They continue to offer the only combined treatment for both sensors and the signal-conditioning circuits associated with them, following the discussion of a given sensor and its applications with signal-conditioning methods for this type of sensor. New and expanded coverage includes:
* New sections on sensor materials and microsensor technology
* Basic measurement methods and primary sensors for common physical quantities
* A wide range of new sensors, from magnetoresistive sensors and SQUIDs to biosensors
* The widely used velocity sensors, fiber-optic sensors, and chemical sensors
* Variable CMOS oscillators and other digital and intelligent sensors
* 68 worked-out examples and 103 end-of-chapter problems with annotated solutions

Read More Show Less

Editorial Reviews

From the Publisher
"...It is sufficiently detailed to be useful to just about anyone involved with sensor development and implementation..." (, 4 February 2003)
Describes the principle of operation of most common sensors, their advantages and disadvantages, and analyzes their electronic signal conditioning circuits. Covers a broad range of sensors and gives actual specifications for several commercial models. Annotation c. Book News, Inc., Portland, OR (
Read More Show Less

Product Details

  • ISBN-13: 9780471332329
  • Publisher: Wiley
  • Publication date: 11/28/2000
  • Edition description: REV
  • Edition number: 2
  • Pages: 608
  • Product dimensions: 6.46 (w) x 9.21 (h) x 1.47 (d)

Meet the Author

RAMON PALLÀS-ARENY, PhD, is a professor at the Technical University of Catalonia (Spain).

JOHN G. WEBSTER, PhD, is a professor at the University of Wisconsin.

Read More Show Less

Read an Excerpt


Sensors have been traditionally used for industrial process control, measurement, and automation, often involving temperature, pressure, flow, and level measurement. Nowadays, sensors enable a myriad of applications fostered by developments in digital electronics and involving the measurement of several physical and chemical quantities in automobiles, aircraft, medical products, office machines, personal computers, consumer electronics, home appliances, and pollution control.

Many of the new application areas for sensors do not pose any severe working conditions and are high-volume consumers. This makes those applications a target for semiconductor-based sensors, particularly sensors built by microfabrication techniques (microsensors), which can be manufactured in large scale. Annual sales of accelerometers and pressure sensors in the automotive industry, along with the annual sales of blood pressure sensors in the medical industry, amount to tens of millions units. Gas sensors, rate sensors, CMOS image sensors, and biosensors can similarly boom.

Classical sensors (or macrosensors) have not been superseded by the new microsensors. Many conventional sensors are still required for specialized applications, so there is no replacement for them in the foreseeable future. Nevertheless, the performance of several integrated circuits commonly used in signal conditioning has improved and allows the design of simpler circuits. Also, there are specific integrated circuits intended for conditioning the signals of common sensors such as thermocouples, RTDs, capacitive sensors, and LVDTs, and microcontrollers have become an inexpensive resource for low-cost, low-resolution analog-to-digital interfacing. Furthermore, the low cost of digital computing has moved part of the calculations and compensations closer to the sensor. The communication with a central controller is increasingly digital, and intelligent (or smart) sensors are being installed in new factories.

This second edition responds to this new scenario from the same point of view of the first edition: that of electronic engineering students or professionals interested in designing measurement systems using available sensors and integrated circuits. For each sensor we describe the working principle, advantages, limitations, types, equivalent circuit, and relevant applications. To clarify sensor types and materials, there is a new section on sensor materials and another on microsensor technology. Microsensors available for different applications are mentioned in the corresponding sections. Sensors are grouped depending on whether (a) they are variable resistors, inductors, capacitors, (b) they generate voltage, charge, or current, or (c) they are digital, semiconductor-junction based, or use some form of radiation. This approach simplifies the study of signal conditioners, which are instrumental in embedding sensors in any electronic system. Basic measurement methods and primary sensors for common physical quantities are described in an expanded section. Further information can be found in J. G. Webster (ed.), The Measurement, Instrumentation, and Sensors Handbook, CRC Press, 1999.

Some new sensors covered are giant magnetoresistive sensors, resistive gas sensors, liquid conductivity sensors, magnetostrictive sensors, SQUIDs, fluxgate magnetometers, Wiegand and pulse-wire sensors, position-sensitive detectors ( PSDs), semiconductor-junction nuclear radiation detectors, CMOS image sensors, and biosensors. Several of these have moved from the research stage to the commercialization stage since the publication of the first edition. Velocity sensors, fiber-optic sensors, and chemical sensors, in general, receive expanded coverage because of their wider use.

Signal conditioners use new ICs with improved parameters, which often enable novel approaches to circuit design. Some new topics are error analysis of single-ended amplifiers, current feedback amplifiers, composite amplifiers, and IC current integrators. The section on noise now includes noise fundamentals, noise analysis of transimpedance and charge amplifiers, and noise and drift in resistors. Chapter 8, on digital and intelligent sensors, has been expanded by adding sections on variable oscillators including a sensor, direct microcomputer interfacing, sensor communications, and intelligent sensors.

Because the selection of the sensor in¯uences the sensitivity, accuracy, and stability of the measurement system, we describe a broad range of sensors and list the actual specifications of several commercial sensors in tables elsewhere in the book. We have summarized several relevant specifications of common integrated circuits for signal conditioning in tables. New sections deal with basic statistical analysis of measurement results, and reliability. We give 68 worked-out examples and include a total of 103 end-of-chapter problems, many from actual design cases. The annotated solution to the problems is in an appendix at the end of the book. End-of-chapter references have been updated. For ease of reference, figures for examples or problems are respectively preceded by an E or a P. Line crossings in figures are not a connection, unless indicated by a dot.

In the study of any field, the knowledge of important dates adds perspective. Hence, this book names the discoverer and approximate date of the discovery of different physical laws applied in sensors. This may also help in preventing professionals from thinking that sensors are subsequent to the transistor (1947), the operational amplifier (1963), or the microprocessor (1971). Some sensors existed long before all of them. It is the work of electronic engineers to apply all the capabilities of integrated circuits in order that the information provided by sensors results in more economical, reliable, and efficient systems for the benefit of the humans, who certainly have limited perception but who have unmatched intelligence and creativity.

Ramon Pallás-Areny

John G. Webster

Barcelona, Spain
Madison, Wisconsin
August, 2000

Read More Show Less

Table of Contents

Introduction to Sensor-Based Measurement Systems.

Resistive Sensors.

Signal Conditioning for Resistive Sensors.

Reactance Variation and Electromagnetic Sensors.

Signal Conditioning for Reactance Variation Sensors.

Self-Generating Sensors.

Signal Conditioning for Self-Generating Sensors.

Digital and Intelligent Sensors.

Other Sensing Methods.



Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)