Sentiment Analysis: Mining Opinions, Sentiments, and Emotions
Sentiment analysis is the computational study of people's opinions, sentiments, emotions, and attitudes. This fascinating problem is increasingly important in business and society. It offers numerous research challenges but promises insight useful to anyone interested in opinion analysis and social media analysis. This book gives a comprehensive introduction to the topic from a primarily natural-language-processing point of view to help readers understand the underlying structure of the problem and the language constructs that are commonly used to express opinions and sentiments. It covers all core areas of sentiment analysis, includes many emerging themes, such as debate analysis, intention mining, and fake-opinion detection, and presents computational methods to analyze and summarize opinions. It will be a valuable resource for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences.
1133130414
Sentiment Analysis: Mining Opinions, Sentiments, and Emotions
Sentiment analysis is the computational study of people's opinions, sentiments, emotions, and attitudes. This fascinating problem is increasingly important in business and society. It offers numerous research challenges but promises insight useful to anyone interested in opinion analysis and social media analysis. This book gives a comprehensive introduction to the topic from a primarily natural-language-processing point of view to help readers understand the underlying structure of the problem and the language constructs that are commonly used to express opinions and sentiments. It covers all core areas of sentiment analysis, includes many emerging themes, such as debate analysis, intention mining, and fake-opinion detection, and presents computational methods to analyze and summarize opinions. It will be a valuable resource for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences.
76.99 In Stock
Sentiment Analysis: Mining Opinions, Sentiments, and Emotions

Sentiment Analysis: Mining Opinions, Sentiments, and Emotions

by Bing Liu
Sentiment Analysis: Mining Opinions, Sentiments, and Emotions

Sentiment Analysis: Mining Opinions, Sentiments, and Emotions

by Bing Liu

eBook

$76.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

Sentiment analysis is the computational study of people's opinions, sentiments, emotions, and attitudes. This fascinating problem is increasingly important in business and society. It offers numerous research challenges but promises insight useful to anyone interested in opinion analysis and social media analysis. This book gives a comprehensive introduction to the topic from a primarily natural-language-processing point of view to help readers understand the underlying structure of the problem and the language constructs that are commonly used to express opinions and sentiments. It covers all core areas of sentiment analysis, includes many emerging themes, such as debate analysis, intention mining, and fake-opinion detection, and presents computational methods to analyze and summarize opinions. It will be a valuable resource for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences.

Product Details

ISBN-13: 9781316287675
Publisher: Cambridge University Press
Publication date: 06/04/2015
Sold by: Barnes & Noble
Format: eBook
File size: 4 MB

About the Author

Bing Liu is a distinguished professor of Computer Science at the University of Illinois at Chicago. His current research interests include sentiment analysis, lifelong machine learning, natural language processing, and data mining. He has published extensively in top conferences and journals, and his research has been cited on the front page of the New York Times. Three of his research papers also received Test-of-Time awards. He is the recipient of ACM SIGKDD Innovation Award in 2018, and is a Fellow of the ACM, AAAI, and IEEE. He served as the Chair of ACM SIGKDD from 2013-2017.

Table of Contents

1. Introduction; 2. The Problem of Sentiment Analysis; 3. Document Sentiment Classification; 4. Sentence Subjectivity and Sentiment Classification; 5. Aspect Sentiment Classification; 6. Aspect and Entity Extraction; 7. Sentiment Lexicon Generation; 8. Analysis of Comparative Opinions; 9. Opinion Summarization and Search; 10. Analysis of Debates and Comments; 11. Mining Intents; 12. Detecting Fake or Deceptive Opinions; 13. Quality of Reviews; 14. Conclusions.
From the B&N Reads Blog

Customer Reviews