Sheaf Theory / Edition 2

Sheaf Theory / Edition 2

by Glen E. Bredon
     
 

ISBN-10: 0387949054

ISBN-13: 9780387949055

Pub. Date: 02/01/1997

Publisher: Springer New York

This book is primarily concerned with the study of cohomology theories of general topological spaces with "general coefficient systems". The parts of sheaf theory covered here are those areas important to algebraic topology. This new edition has been substantially rewritten with the addition of over 80 examples and of further explanatory material. Among the items

Overview

This book is primarily concerned with the study of cohomology theories of general topological spaces with "general coefficient systems". The parts of sheaf theory covered here are those areas important to algebraic topology. This new edition has been substantially rewritten with the addition of over 80 examples and of further explanatory material. Among the items added for this new edition are sections on Cech cohomology, the Oliver transfer, intersection theory, as well as additional topics.

Product Details

ISBN-13:
9780387949055
Publisher:
Springer New York
Publication date:
02/01/1997
Series:
Graduate Texts in Mathematics Series, #170
Edition description:
2nd ed. 1997
Pages:
504
Product dimensions:
1.19(w) x 6.14(h) x 9.21(d)

Table of Contents

I Sheaves and Presheaves.- Definitions.- 2 Homomorphisms, subsheaves, and quotient sheaves.- 3 Direct and inverse images.- 4 Cohomomorphisms.- 5 Algebraic constructions.- 6 Supports.- 7 Classical cohomology theories.- Exercises.- II Sheaf Cohomology.- 1 Differential sheaves and resolutions.- 2 The canonical resolution and sheaf cohomology.- 3 Injective sheaves.- 4 Acyclic sheaves.- 5 Flabby sheaves.- 6 Connected sequences of functors.- 7 Axioms for cohomology and the cup product.- 8 Maps of spaces.- 9—-soft and—-fine sheaves.- 10 Subspaces.- 11 The Vietoris mapping theorem and homotopy invariance.- 12 Relative cohomology.- 13 Mayer-Vietoris theorems.- 14 Continuity.- 15 The Künneth and universal coefficient theorems.- 16 Dimension.- 17 Local connectivity.- 18 Change of supports; local cohomology groups.- 19 The transfer homomorphism and the Smith sequences.- 20 Steenrod’s cyclic reduced powers.- 21 The Steenrod operations.- Exercises.- III Comparison with Other Cohomology Theories.- 1 Singular cohomology.- 2 Alexander-Spanier cohomology.- 3 de Rham cohomology.- 4—ech cohomology.- Exercises.- IV Applications of Spectral Sequences.- 1 The spectral sequence of a differential sheaf.- 2 The fundamental theorems of sheaves.- 3 Direct image relative to a support family.- 4 The Leray sheaf.- 5 Extension of a support family by a family on the base space.- 6 The Leray spectral sequence of a map.- 7 Fiber bundles.- 8 Dimension.- 9 The spectral sequences of Borel and Cartan.- 10 Characteristic classes.- 11 The spectral sequence of a filtered differential sheaf.- 12 The Fary spectral sequence.- 13 Sphere bundles with singularities.- 14 The Oliver transfer and the Conner conjecture.- Exercises.- V Borel-Moore Homology.- 1 Cosheaves.- 2 The dual of a differential cosheaf.- 3 Homology theory.- 4 Maps of spaces.- 5 Subspaces and relative homology.- 6 The Vietoris theorem, homotopy, and covering spaces.- 7 The homology sheaf of a map.- 8 The basic spectral sequences.- 9 Poincaré duality.- 10 The cap product.- 11 Intersection theory.- 12 Uniqueness theorems.- 31 Uniqueness theorems for maps and relative homology.- 14 The Künneth formula.- 15 Change of rings.- 16 Generalized manifolds.- 17 Locally homogeneous spaces.- 18 Homological fibrations and p-adic transformation groups.- 19 The transfer homomorphism in homology.- 20 Smith theory in homology.- Exercises.- VI Cosheaves and—ech Homology.- 1 Theory of cosheaves.- 2 Local triviality.- 3 Local isomorphisms.- 4 Cech homology.- 5 The reflector.- 6 Spectral sequences.- 7 Coresolutions.- 8 Relative—ech homology.- 9 Locally paracompact spaces.- 10 Borel-Moore homology.- 11 Modified Borel-Moore homology.- 12 Singular homology.- 13 Acyclic coverings.- 14 Applications to maps.- Exercises.- A Spectral Sequences.- 1 The spectral sequence of a filtered complex.- 2 Double complexes.- 3 Products.- 4 Homomorphisms.- B Solutions to Selected Exercises.- Solutions for Chapter I.- Solutions for Chapter II.- Solutions for Chapter III.- Solutions for Chapter IV.- Solutions for Chapter V.- Solutions for Chapter VI.- List of Symbols.- List of Selected Facts.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >