Overview

Signal Transduction, 2e, is a thorough, well-illustrated study in cellular signaling processes. Beginning with the basics, this book shows how cells respond to external cues, hormones, growth factors, cytokines, cell surfaces, etc., and further instructs how these inputs are integrated. Instruction continues with up-to-date, inclusive coverage of intracellular calcium, nuclear receptors, tyrosine protein kinases and adaptive immunity, and targeting transduction pathways for research and medical intervention. ...
See more details below
Signal Transduction

Available on NOOK devices and apps  
  • NOOK Devices
  • NOOK HD/HD+ Tablet
  • NOOK
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK Study
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$92.95
BN.com price

Overview

Signal Transduction, 2e, is a thorough, well-illustrated study in cellular signaling processes. Beginning with the basics, this book shows how cells respond to external cues, hormones, growth factors, cytokines, cell surfaces, etc., and further instructs how these inputs are integrated. Instruction continues with up-to-date, inclusive coverage of intracellular calcium, nuclear receptors, tyrosine protein kinases and adaptive immunity, and targeting transduction pathways for research and medical intervention. Signal Transduction, 2e, serves as an invaluable resource for advanced undergraduates, graduate researchers, and established scientists working in cell biology, pharmacology, immunology, and related fields.

* Up-to-date, inclusive coverage of targeting transduction pathways for research and medical intervention
* In-depth coverage of nuclear receptors, including steps in isolation of steroid hormones and the discovery of intracellular hormone receptors; tyrosine protein kinases and adaptive immunity; and intracellular calcium
* Extensive conceptual color artwork to assist with comprehension of key topics
* Instrumental margin notes highlight milestones in signaling mechanisms

Audience: Undergraduate and graduate students in biochemistry, molecular cell biology, cell physiology, pharmacology, and immunology, as well as clinical researchers working in these areas.

Read More Show Less

Editorial Reviews

From The Critics
Signal Transduction is indispensable for modern life sciences.
Michael B. Yaffe
The text is strikingly comprehensive...Written with a single voice, the chapters integrate elegantly with one another, and provide the reader with both broad and comprehensive viewpoints...Remarkably current and up-to-date, the book promises to be a core text for graduate and advanced undergraduate courses in cell signaling and molecular cell biology, and a valuable reference book for all scientists whose work involves mechanisms of cell communication.
From The Critics
This textbook examines how the presence of hormones and other intracellular messengers can influence what happens on the inside of their target cells. The European authors describe the mechanisms of cyclic nucleotides and calcium, the covalent modification of proteins and inositol-containing lipids, and their roles in the initiation of intracellular signaling cascades. Annotation c. Book News, Inc., Portland, OR
Doody's Review Service
Reviewer: Alvin Telser, PhD (Northwestern University Feinberg School of Medicine)
Description: This is a basic and comprehensive textbook on the subject of signal transduction.
Purpose: The authors intend the book to be used as a textbook in an advanced undergraduate or graduate course in this subject area. They also state that they hope and expect it will be interesting and useful to scientists at many levels. Signal transduction has become one of the most active and interesting areas of research in modern cell and molecular biology, which makes this book timely and extremely worthwhile. It is very well written and fully meets the author's objectives.
Audience: The major audience for this book are students who will use the book in a formal course on signal transduction, but it has a great deal of important and useful information and is sufficiently well written that many other scientists will find it useful. The authors are very knowledgeable in the subject area.
Features: The book begins with a very interesting historical perspective and proceeds to discuss all the major areas of signal transduction. The authors employ an excellent balance of experimental data and full color schematic diagrams that will greatly assist readers in understanding the material. There are a substantial number of explanatory margin notes that provide definitions, historical background, or points of general interest that add to the interest and understanding of material in the text.
Assessment: This book is an excellent addition to the line of textbooks that are useful for courses in modern cell and molecular biology. The abundant use of graphics is outstanding. The writing is excellent. This should become the standard textbook in the area of signal transduction.
From the Publisher
"Signal Transduction is indispensable for modern life sciences."
-BIOELECTROCHEMISTRY (April 2003)
"...useful to senior undergrad and grad students entering the field, but will also provide a valuable reference for established researchers."
—CELL

5 Stars! from Doody
Read More Show Less

Product Details

  • ISBN-13: 9780080919058
  • Publisher: Elsevier Science
  • Publication date: 9/22/2009
  • Sold by: Barnes & Noble
  • Format: eBook
  • Edition number: 2
  • Pages: 576
  • File size: 17 MB
  • Note: This product may take a few minutes to download.

Read an Excerpt

Signal Transduction


By Bastien D. Gomperts IJsbrand M. Kramer Peter E.R. Tatham

Academic Press

Copyright © 2009 Elsevier Inc.
All right reserved.

ISBN: 978-0-08-091905-8


Chapter One

Prologue: Signal Tranduction, Origins, and Ancestors

Transduction, the word and its meaning: one dictionary, different points of view

The expression signal transduction first made its mark in the biological literature in the 1970s and appeared as a title word in 1979. Physical scientists and electronic engineers had earlier used the term to describe the conversion of energy or information from one form into another. For example, a microphone transduces sound waves into electrical signals. The widespread use of the term in bio-speak was triggered by an important review by Martin Rodbell, published in 1980 (Figure 1.1). He was the first to draw attention to the role of GTP and GTP-binding proteins in metabolic regulation and he deliberately borrowed the term to describe their role. By the year 2000, 12% of all papers using the term cell also employed the expression signal transduction.

Hormones, evolution, and history

These chemical messengers ... or 'hormones' (from the Greek [TEXT NOT REPRODUCIBLE IN ASCII), meaning excite or arouse), as we may call them, have to be carried from the organ where they are produced to the organ which they affect, by means of the bloodstream, and the continually recurring physiological needs of the organism must determine their repeated production and circulation throughout the body.

The plasma membrane barrier

In the main, when we consider signal transduction we are concerned about how external influences, particularly the presence of specific hormones, can determine what happens inside their target cells. There is a difficulty, since the hormones, being mostly hydrophilic (or lipophobic) substances, are unable to pass through membranes, so that their influence must somehow be exerted from outside. The membranes of cells, although very thin (3–6nm) are effectively impermeable to ions and polar molecules. Although K+ ions might achieve diffusional equilibrium over this distance in water in about 5ms, they would take some 12 days (280h) to equilibrate across a phospholipid bilayer (under similar conditions of temperature, etc.). Likewise, the permeability of membranes to polar molecules is low. Even for small molecules such as urea, membrane permeability is about 104 times lower than that of water. So for a hormone such as adrenaline (epinephrine), the rate of permeation is too low to measure. The evolution of receptors has accompanied the development of mechanisms which permit external chemical signalling molecules, the first messengers, to direct the activities of cells in a variety of ways with high specificity and precise control in terms of extent and duration. With some important exceptions (the steroid hormones, thyroid hormone), they do this without ever needing to penetrate their target cells.

Protohormones

The first messengers (which include the hormones), and their related intracellular (second) messengers, are of great antiquity on the biological timescale. It is interesting to consider which came first: the hormones or the receptors that they control. Substances exhibiting the actions of hormones in animals first made their appearance at early stages of evolution (Figure 1.2). Chemical structures closely related to thyroid hormones have been discovered in algae, sponges, and many invertebrates. Steroids such as estradiol are present in microorganisms and also in ferns and conifers. Catecholamines have been found in protozoa, and ephedrine, which is closely related, can be isolated from the stems and leaves of the Chinese herb Ma Huang (Ephedra sinica). Ephedrine is still in use as an oral stimulant in the treatment of hypotension (low blood pressure) and in the relief of asthma. There are claims, based on immunological detection, for the presence of peptides related to insulin and the endorphins in protozoa, fungi, and even bacteria, although no messenger-like function has been discerned and it is likely that the receptors that mediate their effects in animals evolved much later.

The a- and α-type mating factors of yeast, which certainly act as messengers, are very similar in structure to gonadotropin-releasing hormone (GnRH) which controls the release of gonadotropins from the anterior pituitary in mammals. Factors resembling mammalian atrial natriuretic factor (ANF) are present in the cytosol of the single-cell eukaryote Paramecium multimicronucleatum and in the leaves of many species of plants, where they act as regulators of solvent and solute flow and of the rate of transpiration. ACTH and β-endorphin are present in protozoa. These organisms also contain high molecular mass precursors of these peptides, reminiscent of the vertebrate pro-opiomelanocortin (POMC). It is striking that pathways for the biosynthesis of these 'protohormones', often complex, were established early on, well before the evolution of membrane receptors.

Receptor-like proteins in non-animal cells have been much harder to identify. A recently described example is a protein expressed in the plant Arabidopsis that shares extensive sequence homology with the ionotropic glutamate receptor of mammalian brains. A corollary is the possibility that the potent neurotoxins thought to be generated in defence against herbivores may have their origin as specific agonists, and were only later selected and adapted in some species as poisons. Molecules having a close relationship to the receptors for epidermal growth factor (EGF) and insulin apparently evolved in sponges before the Cambrian Explosion (more than 600 million years ago) and it has been proposed that they may have contributed to the rapid development of the higher metazoan phyla.

Although invertebrates express some members of the nuclear receptor family (such as the receptors for thyroid hormone and vitamin D), nuclear receptors for adrenal and sex steroid hormones (cortisol, aldosterone, testosterone, estradiol, progesterone, etc.) are absent. The ancestral steroid hormone receptor probably made its first appearance in a cephalochordate such as Amphioxus. Receptors for estradiol, progesterone, and cortisol have been cloned from lamprey. From this point in evolution onwards, the steroid hormones would have allowed for a ligand-based mechanism for the regulation of gene transcription and this could have promoted the complex processes of differentiation and development found in the higher vertebrates. Thus, the hox genes that are critical for development and differentiation, including the brain of Amphioxus, are regulated by oestrogens and progestins.

In general, it appears that many of the molecules that we regard as hormones arose long before the receptors that they control. An important consequence of this is that the responses to a given hormone can vary widely across different species and even within species. Numerous actions of prolactin have been identified. It is the regulator of mammary growth and differentiation and of milk protein synthesis in mammals. In birds, it acts as a stimulus to crop milk production and in some species as a controlling factor for fat deposition and as a determinant of migratory behaviour. It is a regulator of water balance in urodeles (newts and salamanders) and of salt adaptation and melanogenesis in fish. Serotonin (5-hydroxytryptamine), a neurotransmitter that controls mood in humans, is reported to stimulate spawning in molluscs, probably as a consequence of its conversion to melatonin (naturally, one wonders whether it affects their mood as well).

Protoendocrinologists

Despite excellent anatomical descriptions, almost nothing was known about the functions of the various organs which constitute the endocrine system (glands) until the last decade of the 19th century. Indeed, in the standard textbook of the period (Foster's Textbook of Physiology, 3 volumes and more than 1200 pages), consideration of the thyroid, the pituitary, the adrenals ('suprarenal bodies'), and the thymus is confined to a brief chapter of less than 10 pages, having the title 'On some structures and processes of an obscure nature'.

The initial impetus prompting the systematic investigations which led to the discovery of the hormones can be ascribed to a series of papers that were much misunderstood. However, here we are confronted with the work of Charles Edouard Brown-Séquard, the successor to Claude Bernard at the Collège de France and also a member of leading scientific academies in England and the USA. He had held professorial appointments at both Harvard and Virginia; in London he was appointed physician at the National Hospital for the Paralysed and Epileptic (now the National Hospital for Neurology and Neurosurgery). He was an associate of Charles Darwin and Thomas Huxley. He wrote over 500 papers relating to many diverse fields such as the physiology of the nervous system; the heart, blood, muscles, and skin; the mechanism of vision; and much more. He was an outstanding experimentalist making fundamental contributions. Starting with his doctoral thesis, he described the course of motor and sensory fibres in the spinal cord, a field to which he returned many times. He was in constant demand as lecturer, teacher, and physician on both sides of the Atlantic, crossing the ocean on more than 60 occasions. Of direct relevance to us must be his demonstration that the adrenal glands are essential to life.

In view of all this, it is curious that Brown-Séquard is now all but forgotten. On the rare occasions when he is recalled, it is generally in connection with a series of brief reports, published in 1889, in which he described the self-administration by injection, of testicular extracts, which he considered had the effect of reinforcing his bodily functions. Some brief quotations from his paper in the Lancet must suffice:

I am seventy-two years old. My general strength, which has been considerable, has notably and gradually diminished during the last ten or twelve years. Before May 15th last, I was so weak that I was always compelled to sit down after about half an hour's work in the laboratory. Even when I remained seated all the time I used to come out of it quite exhausted after three or four hours of experimental labour ...

The day after the first subcutaneous injection, and still more after the two succeeding ones, a radical change took place in me, and I had ample reason to say and to write that I had regained at least all the strength I possessed a good many years ago ...

My limbs, tested with a dynamometer for a week before my trial and during the month following the first injection, showed a decided gain of strength ...

I have measured comparatively, before and after the first injection, the jet of urine in similar circumstances – i.e. after a meal in which I had taken food and drink of the same kind and in similar quantity. The average length of the jet during the ten days that preceded the first injection was inferior by at least one quarter of what it came to be during the twenty following days. It is therefore quite evident that the power of the spinal cord over the bladder was considerably increased ...

I will simply say that after the first ten days of my experiments I have had a greater improvement with regard to the expulsion of faecal matters than in any other function. In fact a radical change took place, and even on days of great constipation the power I long ago possessed had returned.

(Continues...)



Excerpted from Signal Transduction by Bastien D. Gomperts IJsbrand M. Kramer Peter E.R. Tatham Copyright © 2009 by Elsevier Inc.. Excerpted by permission of Academic Press. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Read More Show Less

Table of Contents


Chapter 1 Prologue: Signal Transduction, origins and ancestors
Chapter 2 First messengers
Chapter 3 Receptors
Chapter 4 GTP-binding proteins and signal transduction
Chapter 5 Effector enzymes coupled to GTP binding proteins: adenylyl cyclase and phospholipase C
Chapter 6 The regulation of visual transduction and olfaction
Chapter 7 Intracellular calcium
Chapter 8 Calcium effectors
Chapter 9 Phosphorylation and dephosphorylation: protein kinases A and C
Chapter 10 Nuclear receptors
Chapter 11 Growth Factors: setting the framework
Chapter 12 Signalling pathways operated by receptor protein tyrosine kinases
Chapter 13 Signal transduction to and from adhesion molecules
Chapter 14 Adhesion molecules in the regulation of cell differentiation: Mainly about Wnt
Chapter 15 Activation of the innate immune system: the Toll-like receptor 4 and Signalling through Ubiquitylation
Chapter 16 Traffic of white blood cells
Chapter 17 Tyrosine protein kinases and adaptive immunity : TCR, BCR, soluble tyrosine kinases and NFAT
Chapter 18 Phosphoinositide 3 kinases, protein kinase B and signalling through the insulin receptor
Chapter 19 Protein Kinase C revisited
Chapter 20 Signalling through receptor serine/threonine kinases
Chapter 21 Protein dephosphorylation and protein phosphorylation
Chapter 22 Notch
Chapter 23 Targeting transduction pathways for research and medical intervention
Chapter 24 Protein domains and signal transduction
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)