Signals, Switches, Regulons, and Cascades: Control of Bacterial Gene Expression
The use of DNA arrays and proteomics will transform the scale of our ability to describe the patterns of gene expression as bacteria respond to their environments. However, the ability to control bacteria in a clinical context or exploit them in industrial or environmental contexts also depends on understanding the regulatory mechanisms which connect input experience to output response at the genetic level. This book deals with our current knowledge of the circuits and networks that govern bacterial gene expression—from the single gene to the whole genome—and which provide the framework for explaining the data from the post genomics revolution.
1111653167
Signals, Switches, Regulons, and Cascades: Control of Bacterial Gene Expression
The use of DNA arrays and proteomics will transform the scale of our ability to describe the patterns of gene expression as bacteria respond to their environments. However, the ability to control bacteria in a clinical context or exploit them in industrial or environmental contexts also depends on understanding the regulatory mechanisms which connect input experience to output response at the genetic level. This book deals with our current knowledge of the circuits and networks that govern bacterial gene expression—from the single gene to the whole genome—and which provide the framework for explaining the data from the post genomics revolution.
88.99 In Stock
Signals, Switches, Regulons, and Cascades: Control of Bacterial Gene Expression

Signals, Switches, Regulons, and Cascades: Control of Bacterial Gene Expression

Signals, Switches, Regulons, and Cascades: Control of Bacterial Gene Expression

Signals, Switches, Regulons, and Cascades: Control of Bacterial Gene Expression

Hardcover

$88.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The use of DNA arrays and proteomics will transform the scale of our ability to describe the patterns of gene expression as bacteria respond to their environments. However, the ability to control bacteria in a clinical context or exploit them in industrial or environmental contexts also depends on understanding the regulatory mechanisms which connect input experience to output response at the genetic level. This book deals with our current knowledge of the circuits and networks that govern bacterial gene expression—from the single gene to the whole genome—and which provide the framework for explaining the data from the post genomics revolution.

Product Details

ISBN-13: 9780521813884
Publisher: Cambridge University Press
Publication date: 04/18/2002
Series: Society for General Microbiology Symposia , #61
Pages: 304
Product dimensions: 6.22(w) x 9.33(h) x 0.83(d)

About the Author

David A. Hodgson is a Reader in Microbiology in the Department of Biological Sciences at the University of Warwick.

Christopher M. Thomas is Professor of Molecular Genetics in the School of Biological Sciences at the University of Birmingham.

Table of Contents

Editor's preface; 1. Microbial reaction to environment: bacterial stress responses revisited in the genomic-proteomic era F. C. Neidhardt; 2. Gene variation and gene regulation in bacterial pathogenesis D. Hood and R. Moxon; 3. DNA topology and regulation of bacterial gene expression C. J. Dorman; DNA rearrangements and regulation of gene expression I. C. Blomfield; 4. Structures of multisubunit DNA-dependent RNA polymerases R. D. Finn, E. V. Orlova, M. van Heel and M. Buck; 5. The ECF sigma factors of Streptomyces coelicolor A3(2) M. S. B. Paget, H-J. Hong, M. Bibb and M. J. Buttner; 6. Secrets of bacterial transcription initiation taught by the Escherichia coli FNR protein D. Browning, D. Lee, J. Green and S. Busby; 7. What can be learned from the LacR family of Escherichia coli? B. Muller-Hill; 8. Regulation of the L-arabinose operon in Escherichia coli R. Schleif; 9. Transcription termination control in bacteria T. M. Henkin; 10. Antisense RNAs in programmed cell death K. Gerdes; 11. Control of signal transduction in the sporulation phosphorelay J. A. Hoch; 12. A stranglehold on a transcriptional activator by its partner regulatory protein - the case of the NifL-NifA two-component regulatory system R. Dixon; 13. Is anybody here? Cooperative bacterial gene regulation via peptide signals between Gram-positive bacteria D. A. Morrison; 14. Quorum sensing in Gram-negative bacteria: global regulons controlled by cell-density-dependent chemical signalling N. A. Whitehead, A. K. P. Harris, P. Williams and G. P. C. Salmond; Index.
From the B&N Reads Blog

Customer Reviews