Overview

The first authoritative book on using silver cations in organic chemistry—for catalysis and more!

With more sophisticated catalytic methodologies fueling a resurgence in the study of cation-based chemistry, gold and platinum have stepped to the fore as the unique agents used to create new chemical reactions. Although these metals have become a primary focus of researchers in the field, another coinage metal that is often overlooked—but is as powerful as the others—is silver, a ...

See more details below
Silver in Organic Chemistry

Available on NOOK devices and apps  
  • NOOK Devices
  • NOOK HD/HD+ Tablet
  • NOOK
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK Study
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$71.49
BN.com price
(Save 42%)$125.00 List Price
Note: This NOOK Book can be purchased in bulk. Please email us for more information.

Overview

The first authoritative book on using silver cations in organic chemistry—for catalysis and more!

With more sophisticated catalytic methodologies fueling a resurgence in the study of cation-based chemistry, gold and platinum have stepped to the fore as the unique agents used to create new chemical reactions. Although these metals have become a primary focus of researchers in the field, another coinage metal that is often overlooked—but is as powerful as the others—is silver, a far less costly alternative to gold and platinum in aiding the development of new reactions.

Making a strong case for the use of silver as a catalyst and structural element in organometal constructs, this authoritative book is the first to explore the benefits of using silver in organic chemistry by taking a close look at silver’s unique reactivity and structural characteristics for the development of new methods and materials. Silver in Organic Chemistry is:

  • The first book to address catalysis using silver, whose use in organic chemistry is on the verge of exploding
  • A resource for researchers wishing to do chemistry with silver cations, an area that stands in the shadow of gold chemistry, but still glistens, demonstrating that all that glitters is not gold—sometimes it’s silver!
  • A guide for “first attempts” in working with silver cations
  • Edited by a very well-respected, highly visible authority in this field

Silver in Organic Chemistry promotes further scientific discussion by offering important new ways to examine the future possibilities of an emerging field. By elevating the importance of silver chemistry, this thought-provoking guide illustrates how this versatile metal can become an increasingly significant player in opening the door to new catalytic organic reactions and new organometal materials.

Read More Show Less

Editorial Reviews

From the Publisher
"Altogether, this is an impressive work for both libraries and laboratories. It should serve as a valuable reference source for all those who are already working in the field of silver-catalyzed organic synthesis. Also, readers searching for an emerging area of research will find that the book identifies gaps to be covered by future work, or provides inspiration for new processes to be developed." (Angewandte Chemie, 2010)

"Making a strong case for the use of silver as a catalyst and structural element in organometal constructs, this authoritative book is the first to explore the benefits of using silver in organic chemistry by taking a close look at silvers unique reactivity and structural characteristics for the development of new methods and materials.." (ADVFN India, 23 November 2010)

Read More Show Less

Product Details

  • ISBN-13: 9781118057865
  • Publisher: Wiley
  • Publication date: 1/11/2011
  • Sold by: Barnes & Noble
  • Format: eBook
  • Edition number: 1
  • Pages: 402
  • File size: 7 MB

Meet the Author

MICHAEL HARMATA holds the academic position of Norman Rabjohn Distinguished Professor of Chemistry at the University of Missouri-Columbia. He has published extensively in his field and has been chair of the Gordon Research Conference on Organic Reactions and Processes (2000) and has served as an invited speaker at many U.S. and international universities and conferences, including the International Symposium on Molecular Recognition and Inclusion, the International Congress on Heterocyclic Chemistry, and the International IUPAC Conference on Organic Synthesis. Dr. Harmata has also served on the editorial board of Mini-Reviews in Organic Chemistry and Chemtracts Organic Chemistry. He is the Editor of Elsevier’s book series, Strategies and Tactics in Organic Synthesis, and editor of Springer’s Organic Mechanisms.
Read More Show Less

Table of Contents

Foreword.

Preface.

Contributors.

1 Silver Alkyls, Alkenyls, Aryls, and Alkynyls in Organic Synthesis (Rebecca H. Pouwer and Craig M. Williams).

1.1 Introduction.

1.2 Csp3-Ag.

1.3 Csp2-Ag.

1.4 Csp-Ag.

1.5 Conclusion.

References.

2 Cycloaddition Reactions (Alex M. Szpilman and Erick M. Carreira).

2.1 Introduction.

2.2 [2+2] Cycloadditions.

2.3 [3+2] Cycloadditions.

2.4 [3+3] Cycloadditions.

2.5 [4+2] Cycloadditions.

2.6 Concluding Remarks.

References.

3 Sigmatropic Rearrangements and Related Processes Promoted by Silver (Jean-Marc Weibel, Aurélien Blanc, and Patrick Pale).

3.1 Introduction.

3.2 Wolff and Arndt–Eistert Rearrangements and Related Reactions.

3.3 Ring Rearrangements.

3.4 [3,3]-Sigmatropic Rearrangements.

3.5 [2,3]-Sigmatropic Rearrangements.

3.6 [1,2]-Sigmatropic Rearrangements.

3.7 Miscellaneous.

3.8 Conclusion.

References.

4 Silver(I)-Mediated Electrocyclic Processes (Tina N. Grant and Frederick G. West).

4.1 Introduction.

4.2 Nucleophilic Trapping of Cationic Intermediates.

4.3 The Silver(I)-Promoted Nazarov Reaction.

4.4 Concluding Remarks.

References.

5 Silver-Catalyzed Cycloisomerization Reactions (Philippe Belmont).

5.1 Introduction.

5.2 Cycloisomerization of C=O onto C=C=C.

5.3 Cycloisomerization of C=O onto C ≡ C.

5.4 Cycloisomerization of C=N onto C=C=C.

5.5 Cycloisomerization of C=N onto C ≡ C.

5.6 Ene–Yne Cycloisomerization: C=C onto C ≡ C.

5.7 Other Transformations.

5.8 Conclusion.

References.

6 Silver-Catalyzed Nitrene Transfer Reactions (Zigang Li, David A. Capretto, and Chuan He).

6.1 Introduction.

6.2 Aziridination.

6.3 Sulfide and Sulfoxide Imination.

6.4 Amidation.

6.5 Conclusion.

References.

7 Silver-Catalyzed Silylene Transfer (Tom G. Driver).

7.1 Introduction.

7.2 Reactivity and Attributes of Metal Silylenoids and Silylmetal Complexes.

7.3 Silacyclopropanes as Important Synthetic Intermediates.

7.4 Silver-Mediated Transfer of Di-tert-Butylsilylene to Olefins.

7.5 Silver-Mediated Transfer of Di-tert-Butylsilylene to Acetylenes.

7.6 Silver-Mediated Transfer of Di-tert-Butylsilylene to Carbonyl Compounds.

7.7 Silver-Mediated Transfer of Di-tert-Butylsilylene to Imines.

7.8 Silver-Mediated Di-tert-Butylsilylene Insertion into C–O Bonds.

7.9 Conclusion.

References.

8 Silver Carbenoids (Carl J. Lovely).

8.1 Introduction.

8.2 Wolff Rearrangement.

8.3 Carbene Transfer Reactions to π Bonds.

8.4 Formation and Reactions of Ylides.

8.5 C–H Insertion.

8.6 N–H Insertion.

8.7 Ring Expansion Reactions.

8.8 Intermediacy of Silver Carbenes.

8.9 Miscellaneous Reactions Involving Silver Carbenoids.

8.10 Summary.

Acknowledgments.

References.

9 Aldol and Related Processes (Masanori Kawasaki and Hisashi Yamamoto).

9.1 Introduction.

9.2 Allylation Reaction Using Allyltributyltin.

9.3 Allylation Reaction Using Allylsilanes.

9.4 Aldol Reaction Using Tin Enolates.

9.5 Aldol Reaction Using Silyl Enol Ethers.

9.6 Mannich Reaction.

9.7 Nitrosoaldol Reaction.

9.8 Aldol Reaction with Azodicarboxylate.

9.9 Conclusion.

References.

10 Coupling Reactions Promoted by Silver (Jean-Marc Weibel, Aurélien Blanc, and Patrick Pale).

10.1 Introduction.

10.2 sp3sp3 Coupling Reactions Promoted by Silver Salts.

10.3 sp3sp2 Coupling Reactions Promoted by Silver Salts.

10.4 sp3sp Coupling Reactions Promoted by Silver Salts.

10.5 sp2sp2 Coupling Reactions Promoted by Silver Salts.

10.6 sp2sp Coupling Reactions Promoted by Silver Salts.

10.7 spsp Coupling Reactions Promoted by Silver Salts.

10.8 Conclusion.

References.

11 Supramolecular Chemistry of Silver (Wei-Yin Sun, Zheng-Shuai Bai, and Jin-Quan Yu).

11.1 Introduction.

11.2 Cage-Like Complexes.

11.3 Tube-Like Compounds.

11.4 Polycatenanes with Silver(I).

11.5 Polyrotaxanes with Silver(I).

11.6 Silver(I) Coordination Polymers with Specific Topology.

11.7 Conclusion.

Acknowledgments.

References.

12 A Critical Comparison: Copper, Silver, and Gold (A. Stephen K. Hashmi).

12.1 Introduction.

12.2 Reactions Catalyzed by Copper, Silver, or Gold.

12.3 Reactions Catalyzed by Silver or Gold.

12.4 Reactions Catalyzed by Copper or Silver.

12.5 Conclusion.

References.

Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)