Simple Games: Desirability Relations, Trading, Pseudoweightings

Simple Games: Desirability Relations, Trading, Pseudoweightings

by Alan D. Taylor, William S. Zwicker
     
 

"The authors do a nice job of bringing material from game theory, voting theory, graph theory, and threshold logic together with new results of the authors and presenting it coherently in the context of simple games. As such, it is a useful text for anyone looking for an introduction to simple games that gives not only several perspectives from which to view them,

See more details below

Overview

"The authors do a nice job of bringing material from game theory, voting theory, graph theory, and threshold logic together with new results of the authors and presenting it coherently in the context of simple games. As such, it is a useful text for anyone looking for an introduction to simple games that gives not only several perspectives from which to view them, but also some of the latest results in the field and still-open questions."—Deanna B. Haunsperger, Carleton College

"The authors provide a deep analysis of simple games, particularly with respect to their central concerns of trading, weightedness, and coalitional ordering. They bring a fresh perspective to the field by approaching it from a voting-theoretic angle and utilizing the tools of threshold logic."—Duncan J. Melville, St. Lawrence University

Product Details

ISBN-13:
9780691001203
Publisher:
Princeton University Press
Publication date:
09/22/1999
Pages:
248
Product dimensions:
6.42(w) x 9.52(h) x 0.91(d)

Table of Contents

Preface ix

Acknowledgments xv

Chapter 1 - Fundamentals 3

1.1 Introduction 3

1.2 Examples 8

1.3 The Dual Game 14

1.4 The Algebra of Simple Games 19

1.5 The Two-Point Constant-Sum Extension of a Game 26

1.6 Pregames and Weighted Graphs 29

1.7 Vector-Weighted Simple Games and Dimension Theory 34

1.8 The Voting Bloc and Bicameral Meet Characterization 39

1.9 The Game behind a Simple Game 40

Chapter 2 General Trading: Weighted Games 43

2.1 Introduction 43

2.2 Trading Transforms and Trading Matrices 45

2.3 Sequential Transfers 54

2.4 The Trading Characterization of Weighted Games 56

2.5 Pregraphs and Graphs 63

2.6 The Traditional Approaches: Systems of Linear Inequalities and Separating Hyperplanes 68

2.7 The Gabelman Examples 74

2.8 A General Framework 79

Chapter 3 Pairwise Trading: Linear Games and Winder Games 86

3.1 Introduction 86

3.2 The Desirability Relation on Individuals and Swap Robustness 87

3.3 Shift Minimal Winning Coalitions and the Ordinal Power Structure of a Simple Game 92

3.4 A Classification Theorem for Linear Games 97

3.5 Chvatal's Conjecture 103

3.6 The PSA Pseudoweighting Characterization of Linear Games 110

3.7 The Local Weighting Characterization of Linear Games 115

3.8 Two-Trade Robustness and Winder Games 120

3.9 A Weighting Characterization of Winder Games 122

3.10 The Hereditarily Dual-Comparable Characterization of Winder Games 123

Chapter 4 - Cycle Trading: Weakly Acyclic Games and Strongly Acyclic Games 125

4.1 Introduction 125

4.2 An Impossibility Result for Coalitional Desirability Relations 125

4.3 Possibilities, and More Impossibilities, from the Weight-Induced Order 134

4.4 Lapidot's Desirability Relation on Coalitions and Weakly Acyclic Games 139

4.5 The SSA Pseudoweighting Characterization of Weakly Acyclic Games, and a Generalization 142

4.6 An Inductive Construction of SSA Pseudoweightings for Weakly Acyclic Games 145

4.7 Winder's Desirability Relation on Coalition and Strongly Acyclic Games 150

4.8 A Pseudoweighting Characterization of Strongly Acyclic Games 156

4.9 Sequential Transfer Trading for L and W 157

4.10 Peleg's Question on the Weightedness of Constant-Sum Acyclic Games 165

Chapter 5 - Almost General Trading: Chow Games, Completely Acyclic Games, and Weighted Games 178

5.1 Introduction 178

5.2 Chow Games and Chow-Lapidot Parameters 179

5.3 A Gabelman-Style, Nonweighted Chow Game 183

5.4 The Trading Version of Lapidot's Desirability Relation 190

5.5 The Trading Version of Winder's Desirability Relation 196

5.6 Multiweightings 201

5.7 Weighted Games and the Weight-Induced Order 205

Appendix I: Systems of Linear Inequalities 215

Appendix II: Separating Hyperplanes 220

Appendix III: Duality and Transitivity for Binary Relations 223

References 229

Index 235

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >