So einfach ist Mathematik - Gew�hnliche Differentialgleichungen f�r Anwender
Sie stehen in Ihrem Studium am Anfang der Beschäftigung mit Differentialgleichungen. Das Buch bietet Ihnen eine breitgefächerte und anwendungsorientierte Einführung in dieses Thema. Es motiviert und veranschaulicht die zentralen Begriffe und diskutiert die mathematischen Ergebnisse vor dem Anwendungshintergrund.Das Buch ist aus Erfahrungen von Studierenden mit einer ingenieurmathematischen Vorlesung zu gewöhnlichen Differentialgleichungen entstanden. Nach einer Einführung zu Anwendungen und ihrer Modellierung mithilfe gewöhnlicher Differentialgleichungen folgen kurz moderne Hilfsmittel zur rechnergestützten Behandlung. Lösungsverfahren für wichtige Differentialgleichungstypen und ein Kapitel zu Fragen der Existenz und Eindeutigkeit von Lösungen führen auf den umfangreichsten Anteil des Buches zu linearen Differentialgleichungen und linearen Differentialgleichungssysteme. Auf dem Federschwinger als Prototypen eines schwingenden Systems liegt ein Fokus. Abschließend werden die Laplace-Transformation, ein Randwertproblem und grundsätzlichen Fragen dynamischer Systeme angesprochen. Das Buch erzählt die mathematischen Zusammenhänge in leichtem Ton. Kleinere Aufgaben regen Sie an, eigene Veranschaulichungen, Zugänge und Lösungsansätze zu entwickeln. Sie werden Differentialgleichungen als ein wertvolles Werkzeug zur Beschreibung und Analyse von natur- und ingenieurwissenschaftlichen Prozessen schätzen.
1140677696
So einfach ist Mathematik - Gew�hnliche Differentialgleichungen f�r Anwender
Sie stehen in Ihrem Studium am Anfang der Beschäftigung mit Differentialgleichungen. Das Buch bietet Ihnen eine breitgefächerte und anwendungsorientierte Einführung in dieses Thema. Es motiviert und veranschaulicht die zentralen Begriffe und diskutiert die mathematischen Ergebnisse vor dem Anwendungshintergrund.Das Buch ist aus Erfahrungen von Studierenden mit einer ingenieurmathematischen Vorlesung zu gewöhnlichen Differentialgleichungen entstanden. Nach einer Einführung zu Anwendungen und ihrer Modellierung mithilfe gewöhnlicher Differentialgleichungen folgen kurz moderne Hilfsmittel zur rechnergestützten Behandlung. Lösungsverfahren für wichtige Differentialgleichungstypen und ein Kapitel zu Fragen der Existenz und Eindeutigkeit von Lösungen führen auf den umfangreichsten Anteil des Buches zu linearen Differentialgleichungen und linearen Differentialgleichungssysteme. Auf dem Federschwinger als Prototypen eines schwingenden Systems liegt ein Fokus. Abschließend werden die Laplace-Transformation, ein Randwertproblem und grundsätzlichen Fragen dynamischer Systeme angesprochen. Das Buch erzählt die mathematischen Zusammenhänge in leichtem Ton. Kleinere Aufgaben regen Sie an, eigene Veranschaulichungen, Zugänge und Lösungsansätze zu entwickeln. Sie werden Differentialgleichungen als ein wertvolles Werkzeug zur Beschreibung und Analyse von natur- und ingenieurwissenschaftlichen Prozessen schätzen.
19.99 In Stock
So einfach ist Mathematik - Gew�hnliche Differentialgleichungen f�r Anwender

So einfach ist Mathematik - Gew�hnliche Differentialgleichungen f�r Anwender

by Dirk Langemann
So einfach ist Mathematik - Gew�hnliche Differentialgleichungen f�r Anwender

So einfach ist Mathematik - Gew�hnliche Differentialgleichungen f�r Anwender

by Dirk Langemann

eBook1. Aufl. 2022 (1. Aufl. 2022)

$19.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Sie stehen in Ihrem Studium am Anfang der Beschäftigung mit Differentialgleichungen. Das Buch bietet Ihnen eine breitgefächerte und anwendungsorientierte Einführung in dieses Thema. Es motiviert und veranschaulicht die zentralen Begriffe und diskutiert die mathematischen Ergebnisse vor dem Anwendungshintergrund.Das Buch ist aus Erfahrungen von Studierenden mit einer ingenieurmathematischen Vorlesung zu gewöhnlichen Differentialgleichungen entstanden. Nach einer Einführung zu Anwendungen und ihrer Modellierung mithilfe gewöhnlicher Differentialgleichungen folgen kurz moderne Hilfsmittel zur rechnergestützten Behandlung. Lösungsverfahren für wichtige Differentialgleichungstypen und ein Kapitel zu Fragen der Existenz und Eindeutigkeit von Lösungen führen auf den umfangreichsten Anteil des Buches zu linearen Differentialgleichungen und linearen Differentialgleichungssysteme. Auf dem Federschwinger als Prototypen eines schwingenden Systems liegt ein Fokus. Abschließend werden die Laplace-Transformation, ein Randwertproblem und grundsätzlichen Fragen dynamischer Systeme angesprochen. Das Buch erzählt die mathematischen Zusammenhänge in leichtem Ton. Kleinere Aufgaben regen Sie an, eigene Veranschaulichungen, Zugänge und Lösungsansätze zu entwickeln. Sie werden Differentialgleichungen als ein wertvolles Werkzeug zur Beschreibung und Analyse von natur- und ingenieurwissenschaftlichen Prozessen schätzen.

Product Details

ISBN-13: 9783662648315
Publisher: Springer Spektrum
Publication date: 05/14/2022
Sold by: Barnes & Noble
Format: eBook
File size: 16 MB
Note: This product may take a few minutes to download.
Language: German

About the Author

Dirk Langemann hat Mathematik an der Universität Rostock studiert und arbeitet seit 2009 als Professor an der Technischen Universität Braunschweig. Er beschäftigt sich mit Fragen der mathematischen Modellierung und ist für die grundständigen Mathematik-Lehrveranstaltungen in ingenieurwissenschaftlichen Studiengängen verantwortlich.



Table of Contents

Einführung.- Ausgewählte Differentialgleichungen und Lösungsansätze.- Existenz und Eindeutigkeit der Lösungen von Differentialgleichungen.- Lineare Differentialgleichungen höherer Ordnung.- Lineare Differentialgleichungen mit konstanten Koeffizienten.- Systeme von linearen Differentialgleichungen.- Laplace-Transformation.- Ein Randwertproblem.- Dynamische Systeme.
From the B&N Reads Blog

Customer Reviews