The Solar Tachocline

The Solar Tachocline

by D. W. Hughes
     
 

ISBN-10: 0521861012

ISBN-13: 9780521861014

Pub. Date: 06/18/2007

Publisher: Cambridge University Press

Helioseismology has enabled us to probe the internal structure and dynamics of the Sun, including how its rotation varies in the solar interior. The unexpected discovery of an abrupt transition - the tachocline - between the differentially rotating convection zone and the uniformly rotating radiative interior has generated considerable interest and raised many

Overview

Helioseismology has enabled us to probe the internal structure and dynamics of the Sun, including how its rotation varies in the solar interior. The unexpected discovery of an abrupt transition - the tachocline - between the differentially rotating convection zone and the uniformly rotating radiative interior has generated considerable interest and raised many fundamental issues. This volume contains invited reviews from distinguished speakers at the first meeting devoted to the tachocline, held at the Isaac Newton Institute. It provides a comprehensive account of the understanding of the properties and dynamics of the tachocline, including both observational results and major theoretical issues, involving both hydrodynamic and magnetohydrodynamic behaviour. The Solar Tachocline is a valuable reference for researchers and graduate students in astrophysics, heliospheric physics and geophysics, and the dynamics of fluids and plasmas.

Product Details

ISBN-13:
9780521861014
Publisher:
Cambridge University Press
Publication date:
06/18/2007
Pages:
382
Product dimensions:
6.85(w) x 9.72(h) x 0.98(d)

Table of Contents

Preface; Part I. Setting the Scene: 1. An introduction to the solar tachocline D. O. Gough; 2. Reflections on the solar tachocline E. A. Spiegel; Part II. Observations: 3. Observational results and issues concerning the tachocline J. Christensen-Dalsgaard and M. J. Thompson; Part III. Hydrodynamic Models: 4. Hydrodynamic models of the tachocline J.-P. Zahn; 5. Turbulence in the tachocline M. S. Miesch; 6. Mean field modelling of differential rotation G. Rudiger and L. L. Kitchatinov; Part IV. Hydromagnetic Properties: 7. Magnetic confinement of the solar tachocline P. Garaud; 8. Magnetic confinement and the sharp tachopause M. E. McIntyre; 9. ß-Plane MHD turbulence and dissipation in the solar tachocline P. H. Diamond, K. Itoh, S.-I. Itoh and L. J. Silvers; Part V. Instabilities: 10. Global MHD instabilities of the tachocline P. A. Gilman and P. S. Cally; 11. Magnetic buoyancy instabilities in the tachocline D. W. Hughes; 12. Instabilities, angular momentum transport and magnetohydrodynamic turbulence G. I. Ogilvie; Part VI. Dynamo Action: 13. The solar dynamo and the tachocline S. M. Tobias and N. O. Weiss; Part VII. Overview: 14. On studying the rotating solar interior R. Rosner; Index.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >