Space Mission Analysis and Design / Edition 1

Paperback (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $7.74
Usually ships in 1-2 business days
(Save 92%)
Other sellers (Paperback)
  • All (13) from $7.74   
  • New (2) from $68.11   
  • Used (11) from $7.74   
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any coupons and promotions
Seller since 2008

Feedback rating:



New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.


Ships from: Chicago, IL

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
Seller since 2007

Feedback rating:


Condition: New

Ships from: Avenel, NJ

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
Page 1 of 1
Showing All
Sort by


This third edition of Space Mission Analysis and Design, known as SMAD to its many friends, carries on the tradition of the first two editions of providing a practical handbook for Space Mission Engineering - the process of defining mission parameters and refining requirements to meet the often fuzzy objectives of a space mission at minimum cost and risk. We begin the process with a "blank sheet of paper" and carry the reader through a preliminary mission design covering all system aspects: orbit and constellation design, mission geometry, launch vehicle selection, and design of the spacecraft, payload, ground segment, and operations. The book is a comprehensive presentation of theory and practice, drawing on the insight and practical knowledge of leading experts from all segments of the aerospace community.

SMAD III both updates the technology and provides a greater emphasis on the design of smaller spacecraft and the process of reducing cost. It has been expanded to include more detail on multi-satellite manufacturing and the design and selection of constellation parameters. The discussion of space computers has been expanded and revised. The unmanned spacecraft cost model has been updated and the new Small Satellite Cost Model has been added. The discussion of payload design has been extensively revised and expanded. Discussions of electric propulsion, autonomous systems, on-board navigation, and the use of commercial PCs and COTS software have been expanded in keeping with current trends in system design. The appendices and tables have been made even more extensive and useful.

Because of its practical orientation, useful data and formulas, and process tables whichsummarize the design methodology of all major mission elements, SMAD has become the most widely used volume in astronautics. It is intended for both students and professionals in astronautics and space science. It is appropriate for engineers, scientists, and managers trying to obtain the best mission possible within a limited budget and for students working on advanced design projects or just beginning in space systems engineering. It is the indispensable traveling companion for seasoned veterans or those just beginning to explore the highways and by-ways of space mission engineering.

Read More Show Less

Editorial Reviews

From the Publisher
But as a reference volume for system engineers and satellite designers it would appear to be an invaluable collection of data.
The Aeronautical Journal
Read More Show Less

Product Details

  • ISBN-13: 9780792309710
  • Publisher: Springer Netherlands
  • Publication date: 9/28/1991
  • Series: Space Technology Library Series, #2
  • Edition description: Softcover reprint of the original 1st ed. 1991
  • Edition number: 1
  • Pages: 813

Read an Excerpt

Chapter 2: Mission Characterization

Another problem which can arise from time to time is incompatible functions, that is, activities which do not work well together. One example would be sporadic, computationally-intensive functions which demand resources at the same time. Another example occurs when the initial processing of either spacecraft bus or payload sensors may well be an interrupt-driven activity in which the computer is spending most of its time servicing interrupts to bring in observational data. This could make it difficult for the same computer to handle computationally-intensive processing associated with higher-level activities. This can be accommodated either by having the functions handled in separate computers or using a separate 1/O processor to queue data from the process with a large number of interrupts.

Finally, we must consider the groups who oversee different activities. Integration and test of any computer and its associated software will be much more difficult if two distinct groups develop software for the same computer. In this case, significant delays and risks can occur. This does not necessarily mean, however, that elements controlled by different groups cannot be accommodated in the same computer. One approach might be to have two engineering groups be responsible for development of specifications and ultimately for testing. The detailed specifications are then handed over to a single programming group which then implements them in a single computer. This allows a single group to be responsible for control of computer resources. Thus, for example, the orbit control and attitude control functions may be specified and tested by differentanalysis groups. However, it may be reasonable to implement both functions in a single computer by a single group of programmers.

2.1.2 Tasking, Scheduling, and Control

Tasking, scheduling, and control is the other end of the data-delivery problem. If the purpose of our mission is to provide data or information, how do we decide what information to supply, whom to send it to, and which resources to obtain it from? Many of the issues are the same as in data delivery but with several key differences. Usually, tasking and control involve very low data rates and substantial decision making. Thus, we should emphasize how planning and control decisions are made rather than data management.

Tasking and scheduling typically occur in two distinct time frames. Short-term tasking addresses what the spacecraft should be doing at this moment. Should FireSat be recharging its batteries, sending data to a ground station, turning to look at a fire over Yosemite, or simply looking at the world below? In contrast, long-term planning establishes general tasks the system should do. For example, in some way the FireSat system must decide to concentrate its resources on northwestern Pacific forests for several weeks and then begin looking systematically at forests in Brazil. During concept exploration, we don't need to know precisely how these decisions are made. We simply wish to identify them and know broadly how they will take place.

On the data distribution side, direct downlink of data works well. We can process data on board, send it simultaneously to various users on the ground, and provide a low-cost, effective system. On the other hand, direct-distributed control raises serious problems of tasking, resource allocation, and responsibility. The military community particularly wants distributed control so a battlefield commander can control resources to meet mission objectives. For FireSat, this would translate into the local rangers deciding how much resource to apply to fires in a particular area, including the surveillance resources from FireSat. The two problems here are the limited availability of resources in space and broad geographic coverage. For example, FireSat may have limited power or data rates. In either case, if one regional office controls the system for a time, they may use most or all of that resource. Thus, other users would have nothing left. Also, FireSat could be in a position to see fires in Yosemite Park and Alaska at the same time. So distributed control could create conflicts.

For most space systems, some level of centralized control is probably necessary to determine how to allocate space resources among various tasks. Within this broad resource allocation, however, we may have room for distributed decisions on what data to collect and make available, as well as how to process it. For example, the remote fire station may be interested in information from a particular spectral band which could provide clues on the characteristics of a particular fire. If this is an appropriate option, the system must determine how to feed that request back to the satellite. We could use a direct command, or, more likely, send a request for specific data to mission operations which carries out the request.

Spacecraft Autonomy. Usually, high levels of autonomy and independent operations occur in the cheapest and most expensive systems. The less costly systems have minimal tasking and control simply because they cannot afford the operations cost for deciding what needs to be done. Most often, they continuously carry on one of a few activities, such as recovering and relaying radio messages or continuously transmitting an image of what is directly under the spacecraft. What is done is determined automatically on board to save money. In contrast, the most expensive systems have autonomy for technical reasons, such as the need for a very rapid response (missile detection systems), or a problem of very long command delays (interplanetary missions). Typically, autonomy of this type is extremely expensive because the system must make complex, reliable decisions and respond to change.

Autonomy can also be a critical issue for long missions and for constellations, in which cost and reliability are key considerations. For example, long-duration orbit maneuvers may use electric propulsion which is highly efficient, but slow. (See Chap. 17 for details.) Thruster firings are ordinarily controlled and monitored from the ground, but electric propulsion maneuvers may take several months. Because monitoring and controlling long thruster burns would cost too much, electric propulsion requires some autonomy.

As shown in Fig. 2-3, autonomy can add to mission reliability simply by reducing the complexity of mission operations. We may need to automate large constellations for higher reliability and lower mission-operations costs. Maintaining the relative positions between the satellites in a constellation is routine but requires many computations. Thus, onboard automation-with monitoring and operator override if necessary-will give us the best results.

With the increased level of onboard processing available, it is clearly possible to create fully autonomous satellites. The question is, should we do so or should we continue to control satellites predominantly from the ground?

Three main functions are associated with spacecraft control: controlling the payload, controlling the attitude of the spacecraft and its appendages, and controlling the spacecraft orbit. Most space payloads and bus systems do not require real-time control except for changing mode or handling anomalies. Thus, the FireSat payload will probably fly rather autonomously until a command changes a mode or an anomaly forces the payload to make a change or raise a warning. Autonomous, or at least semiautonomous payloads are reasonable for many satellites. There are, of course, exceptions such as Space Telescope, which is an ongoing series of experiments being run by different principal investigators from around the world...

Read More Show Less

Table of Contents

1. The Space Mission Analysis and Design Process.- 2. Mission Characterization.- 3. Mission Evaluation.- 4. Requirements Definition.- 5. Space Mission Geometry.- 6. Introduction to Astrodynamics.- 7. Orbit and Constellation Design.- 8. The Space Environment and Survivability.- 9. Defining and Sizing Space Payloads.- 10. Spacecraft Design and Sizing.- 11. Spacecraft Subsystems.- 12. Spacecraft Manufacture and Test.- 13. Communications Architecture.- 14. Mission Operations.- 15. Ground System Design and Sizing.- 16. Spacecraft Computer Systems.- 17. Space Propulsion Systems.- 18. Launch Systems.- 19. Space Logistics and Reliability.- 20. Cost Modeling.- 21. Limits on Mission Design.- 22. Design of Low-Cost Spacecraft.- 23. International Spacecraft Design Experience.- Appendix A Standard Notation.- Appendix B Spherical Geometry Formulas.- Appendix C Units and Conversion Factors.- Appendix D Astronautical and Astrophysical Data.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)