Space-Time Coding for Broadband Wireless Communications / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
$99.60
Used and New from Other Sellers
Used and New from Other Sellers
from $65.94
Usually ships in 1-2 business days
(Save 45%)
Other sellers (Hardcover)
  • All (15) from $65.94   
  • New (8) from $88.43   
  • Used (7) from $65.94   

Overview

This is the first book on space-time coding for wireless communications, one of the most promising techniques for ensuring bandwidth efficiency. The text describes theoretical principles as well as engineering applications; discusses key criteria in the design of practical space-time codes; and covers single-carrier and multi-carrier transmission for both single- and multi-user communications.

Read More Show Less

Product Details

  • ISBN-13: 9780471214793
  • Publisher: Wiley
  • Publication date: 1/2/2007
  • Edition number: 1
  • Pages: 464
  • Product dimensions: 6.50 (w) x 9.31 (h) x 1.11 (d)

Meet the Author

GEORGIOS B. GIANNAKIS, PhD, is ADC Endowed Chair Professor in Wireless Telecommunications with the Department of Electrical and Computer Engineering at the University of Minnesota. He is a Fellow of the IEEE, a (co-)recipient of six IEEE best paper awards (including the IEEE Communication Society's 2004 Guglielmo Marconi Prize Paper), and a recipient of the IEEE Signal Processing Society's Technical Achievement Award. His interests and expertise span the areas of wireless communications, wireless networks, sensor networks, and statistical signal processing.

ZHIQIANG LIU, PhD, is Assistant Professor with the Department of Electrical and Computer Engineering at the University of Iowa. His research interests include space-time coding and processing, wireless communications theory, synchronization, channel estimation, and sensor networks.

XIAOLI MA, PhD, is Assistant Professor with the School of Electrical and Computer Engineering at the Georgia Institute of Technology. Her research interests include signal processing for communications and networking, signal estimation algorithms, wireless communications theory, and sensor networks.

SHENGLI ZHOU, PhD, is Assistant Professor with the Department of Electrical and Computer Engineering at the University of Connecticut. His research interests include wireless communications and signal processing, underwater acoustic communications and networking, and wireless positioning and synchronization.

Read More Show Less

Table of Contents

Preface.

Acronyms.

1. Motivation and Context.

1.1 Evolution of Wireless Communication Systems.

1.2 Wireless Propagation Effects.

1.3 Parameters and Classification of Wireless Channels.

1.3.1 Delay Spread and Coherence Bandwidth.

1.3.2 Doppler Spread and Coherence Time.

1.4 Providing, Enabling and Collecting Diversity.

1.4.1 Diversity Provided by Frequency-Selective Channels.

1.4.2 Diversity Provided by Time-Selective Channels.

1.4.3 Diversity Provided by Multi-Antenna Channels.

1.5 Chapter-by-Chapter Organization.

2. Fundamentals of ST Wireless Communications.

2.1 Generic ST System Model.

2.2 ST Coding viz Channel Coding.

2.3 Capacity of ST Channels.

2.3.1 Outage Capacity.

2.3.2 Ergodic Capacity.

2.4 Error Performance of ST Coding.

2.5 Design Criteria for ST Codes.

2.6 Diversity and Rate: Finite SNR viz Asymptotics.

2.7 Classification of ST Codes.

2.8 Closing Comments.

3. Coherent ST Codes for Flat Fading Channels.

3.1 Delay Diversity ST Codes.

3.2 ST Trellis Codes.

3.2.1 Trellis Representation.

3.2.2 TSC ST Trellis Codes.

3.2.3 BBH ST Trellis Codes.

3.2.4 GFK ST Trellis Codes.

3.2.5 Viterbi Decoding of ST Trellis Codes.

3.3 Orthogonal ST Block Codes.

3.3.1 Encoding of OSTBCs.

3.3.2 Linear ML Decoding of OSTBCs.

3.3.3 BER Performance with OSTBCs.

3.3.4 Channel Capacity with OSTBCs.

3.4 Quasi-Orthogonal ST Block Codes.

3.5 ST Linear Complex Field Codes.

3.5.1 Antenna Switching and Linear Precoding.

3.5.2 Designing Linear Precoding Matrices.

3.5.3 Upper-Bound on Coding Gain.

3.5.4 Construction based on Parameterization.

3.5.5 Construction Based on Algebraic Tools.

3.5.6 Decoding ST Linear Complex Field Codes.

3.5.7 Modulus-Preserving STLCFC.

3.6 Linking OSTBC, QO-STBC and STLCFC Designs.

3.6.1 Embedding MP-STLCFC into the Alamouti Code.

3.6.2 Embedding 2 x 2 MP-STLCFCs into OSTBC.

3.6.3 Decoding QO-MP-STLCFC.

3.7 Closing Comments.

4. Layered ST Codes.

4.1 BLAST Designs.

4.1.1 D-BLAST.

4.1.2 V-BLAST.

4.1.3 Rate Performance with BLAST Codes.

4.2 ST Codes Trading Diversity for Rate.

4.2.1 Layered ST Codes with Antenna-Grouping.

4.2.2 Layered High-Rate Codes.

4.3 Full-Diversity Full-Rate ST Codes.

4.3.1 The FDFR Transceiver.

4.3.2 Algebraic FDFR Code Design.

4.3.3 Mutual Information Analysis.

4.3.4 Diversity-Rate-Performance Trade-offs.

4.4 Numerical Examples.

4.5 Closing Comments.

5. Sphere Decoding and (Near-) Optimal MIMO Demodulation.

5.1 Sphere Decoding Algorithm.

5.1.1 Selecting a Finite Search Radius.

5.1.2 Initializing with Unconstrained LS.

5.1.3 Searching within the Fixed-Radius Sphere.

5.2 Average Complexity of SDA in Practice.

5.3 SDA Improvements.

5.3.1 SDA with Detection Ordering and Nulling-Cancelling.

5.3.2 Schnorr-Euchner Variate of SDA.

5.3.3 SDA with Increasing Radius Search.

5.3.4 Simulated Comparisons.

5.4 Reduced-Complexity IRS-SDA.

5.5 Soft Decision Sphere Decoding.

5.5.1 List Sphere Decoding (LSD).

5.5.2 Soft SDA using Hard SDAs.

5.6 Closing Comments.

6. Non-Coherent and Differential ST Codes for Flat Fading Channels.

6.1 Non-Coherent ST Codes.

6.1.1 Search-Based Designs.

6.1.2 Training-Based Designs.

6.2 Differential ST Codes.

6.2.1 Scalar Differential Codes.

6.2.2 Differential Unitary ST Codes.

6.2.3 Differential Alamouti Codes.

6.2.4 Differential OSTBCs.

6.2.5 Cayley Differential Unitary ST Codes.

6.3 Closing Comments.

7. ST Codes for Frequency-Selective Fading Channels: Single-Carrier Systems.

7.1 System Model and Performance Limits.

7.1.1 Flat-Fading Equivalence and Diversity.

7.1.2 Rate Outage Probability.

7.2 ST Trellis Codes.

7.2.1 Generalized Delay Diversity.

7.2.2 Search-Based STTC Construction.

7.2.3 Numerical Examples.

7.3 ST Block Codes.

7.3.1 Block Coding with Two Transmit-Antennas.

7.3.2 Receiver Processing.

7.3.3 ML Decoding based on the Viterbi Algorithm.

7.3.4 Turbo Equalization.

7.3.5 Multi-Antenna Extensions.

7.3.6 OSTBC Properties.

7.3.7 Numerical Examples.

7.4 Closing Comments.

8. ST Codes for Frequency-Selective Fading Channels: Multi-Carrier Systems.

8.1 The General MIMO OFDM Framework.

8.1.1 OFDM Basics.

8.1.2 MIMO OFDM.

8.1.3 STF Framework.

8.2 ST and SF Coded MIMO OFDM.

8.3 STF Coded OFDM.

8.3.1 Subcarrier Grouping.

8.3.2 GSTF Block Codes.

8.3.3 GSTF Trellis Codes.

8.3.4 Numerical Examples.

8.4 Digital Phase Sweeping and Block Circular Delay.

8.5 Full-Diversity Full-Rate MIMO OFDM.

8.5.1 Encoders and Decoders.

8.5.2 Diversity and Rate Analysis.

8.5.3 Numerical Examples.

8.6 Closing Comments.

9. ST Codes for Time-Varying Channels.

9.1 Time-Varying Channels.

9.1.1 Channel Models.

9.1.2 Time-Frequency Duality.

9.1.3 Doppler Diversity.

9.2 Space-Time-Doppler Block Codes.

9.2.1 Duality-Based STDO Codes.

9.2.2 Phase Sweeping Design.

9.3 Space-Time-Doppler FDFR Codes.

9.4 Space-Time-Doppler Trellis Codes.

9.4.1 Design Criterion.

9.4.2 Smart-Greedy Codes.

9.5 Numerical Examples.

9.6 Space-Time-Doppler Differential Codes.

9.6.1 Inner Codec.

9.6.2 Outer Differential Codec.

9.7 ST Codes for Doubly-Selective Channels.

9.7.1 Numerical Examples.

9.8 Closing Comments.

10. Joint Galois-Field and Linear Complex-Field ST Codes.

10.1 GF-LCF ST Codes.

10.1.1 Separate versus Joint GF-LCF ST Coding.

10.1.2 Performance Analysis.

10.1.3 Turbo Decoding.

10.2 GF-LCF ST Layered Codes.

10.2.1 GF-LCF ST FDFR Codes: QPSK Signalling.

10.2.2 GF-LCF ST FDFR Codes: QAM Signalling.

10.2.3 Performance Analysis.

10.2.4 GF-LCF FDFR versus GF-Coded V-BLAST.

10.2.5 Numerical Examples.

10.3 GF-LCF Coded MIMO OFDM.

10.3.1 Joint GF-LCF Coding and Decoding.

10.3.2 Numerical Examples.

10.4 Closing Comments.

11. MIMO Channel Estimation and Synchronization.

11.1 Preamble-Based Channel Estimation.

11.2 Optimal Training-Based Channel Estimation.

11.2.1 ZP-Based Block Transmissions.

11.2.2 CP-Based Block Transmissions.

11.2.3 Special Cases.

11.2.4 Numerical Examples.

11.3 (Semi-)Blind Channel Estimation.

11.4 Joint Symbol Detection and Channel Estimation.

11.4.1 Decision-Directed Methods.

11.4.2 Kalman Filtering Based Methods.

11.5 Carrier Synchronization.

11.5.1 Hopping Pilot Based CFO Estimation.

11.5.2 Blind CFO Estimation.

11.5.3 Numerical Examples.

11.6 Closing Comments.

12. ST Codes with Partial Channel Knowledge: Statistical CSI.

12.1 Partial CSI Models.

12.1.1 Statistical CSI.

12.2 ST Spreading.

12.2.1 Average Error Performance.

12.2.2 Optimization based on Average SER Bound.

12.2.3 Mean-Feedback.

12.2.4 Covariance-Feedback.

12.2.5 Beamforming Interpretation.

12.3 Combining OSTBC with Beamforming.

12.3.1 Two-Dimensional Coder-Beamformer.

12.4 Numerical Examples.

12.4.1 Performance with Mean-Feedback.

12.4.2 Performance with Covariance-Feedback.

12.5 Adaptive Modulation for Rate Improvement.

12.5.1 Numerical Examples.

12.6 Optimizing Average Capacity.

12.7 Closing Comments.

13. ST Codes With Partial Channel Knowledge: Finite-Rate CSI.

13.1 General Problem Formulation.

13.2 Finite-Rate Beamforming.

13.2.1 Beamformer Selection.

13.2.2 Beamformer Codebook Design.

13.2.3 Quantifying the Power Loss.

13.2.4 Numerical Examples.

13.3 Finite-Rate Precoded Spatial Multiplexing.

13.3.1 Precoder Selection Criteria.

13.3.2 Codebook Construction: Infinite-Rate.

13.3.3 Codebook Construction: Finite-Rate.

13.3.4 Numerical Examples.

13.4 Finite-Rate Precoded OSTBC.

13.4.1 Precoder Selection Criterion.

13.4.2 Codebook Construction: Infinite-Rate.

13.4.3 Codebook Construction: Finite-Rate.

13.4.4 Numerical Examples.

13.5 Capacity Optimization with Finite-Rate Feedback.

13.5.1 Selection Criterion.

13.5.2 Codebook Design.

13.6 Combining Adaptive Modulation with Beamforming.

13.6.1 Mode Selection.

13.6.2 Codebook Design.

13.7 Finite-rate Feedback in MIMO OFDM.

13.8 Closing Comments.

14. ST Codes in the Presence of Interference.

14.1 ST Spreading.

14.1.1 Maximizing the Average SINR.

14.1.2 Minimizing the Average Error Bound.

14.2 Combining STS with OSTBC.

14.2.1 Low-Complexity Receivers.

14.3 Optimal Training with Interference.

14.3.1 LS Channel Estimation.

14.3.2 LMMSE Channel Estimation.

14.4 Numerical Examples.

14.5 Closing Comments.

15. ST Codes for Orthogonal Multiple Access.

15.1 System Model.

15.1.1 Synchronous downlink.

15.1.2 Quasi-synchronous uplink.

15.2 Single-Carrier Systems: STBC-CIBS-CDMA.

15.2.1 CIBS-CDMA for User Separation.

15.2.2 STBC Encoding and Decoding.

15.2.3 Attractive Features of STBC-CIBS-CDMA.

15.2.4 Numerical Examples.

15.3 Multi-Carrier Systems: STF-OFDMA.

15.3.1 OFDMA for User Separation.

15.3.2 STF Block Codes.

15.3.3 Attractive Features of STF-OFDMA.

15.3.4 Numerical Examples.

15.4 Closing Comments.

References.

Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)