Spherical Inversion on SLn(R) / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
$154.92
Used and New from Other Sellers
Used and New from Other Sellers
from $3.10
Usually ships in 1-2 business days
(Save 98%)
Other sellers (Hardcover)
  • All (21) from $3.10   
  • New (6) from $93.87   
  • Used (15) from $3.10   

Overview

"Harish-Chandra's general Plancherel inversion theorem admits a much shorter presentation for spherical functions. The authors have taken into account contributions by Helgason, Gangolli, Rosenberg, and Anker from the mid-1960s to 1990. Anker's simplification of spherical inversion on the Harish-Chandra Schwartz space had not yet made it into a book exposition. Previous expositions have a dealt with a general, wide class of Lie groups. This has made access to the subject difficult for outsiders, who may wish to connect some aspects with several if not all other parts of mathematics, and do so for specific cases of intrinsic interest. The essential features of Harish-Chandra theory are exhibited on SL[subscript n](R), but hundreds pages of background can be replaced by short direct verifications. The material becomes accessible to graduate students with essentially no background in Lie groups and representation theory. Spherical inversion is sufficient to deal with the heat kernel, which is at the center of the authors' current research. The book will serve as a self-contained background for parts of this research."--BOOK JACKET.
Read More Show Less

Editorial Reviews

From the Publisher

From the reviews:

"[This] book presents the essential features of the theory on SLn(R). This makes the book accessible to a wide class of readers, including nonexperts of Lie groups and representation theory and outsiders who would like to see connections of some aspects with other parts of mathematics. This feature is widely to be appreciated, together with the clearness of exposition and the way the book is structured." -Sergio Console, Zentralblatt

"This book is devoted to Harish-Chandra’s Plancherel inversion formula in the special case of the group SLn(R) and for spherical functions. ... the book is easily accessible and essentially self contained." (A. Cap, Monatshefte für Mathematik, Vol. 140 (2), 2003)

"Roughly, this book offers a ‘functorial exposition’ of the theory of spherical functions developed in the late 1950s by Harish-Chandra, who never used the word ‘functor’. More seriously, the authors make a considerable effort to communicate the theory to ‘an outsider’. .... However, even an expert will notice several new and pleasing results like the smooth version of the Chevally restriction theorem in Chapter 1." (Tomasz Przebinda, Mathematical Reviews, Issue 2002 j)

"This excellent book is an original presentation of Harish-Chandra’s general results ... . Unlike previous expositions which dealt with general Lie groups, the present book presents the essential features of the theory on SLn(R). This makes the book accessible to a wide class of readers, including nonexperts ... . This feature is widely to be appreciated, together with the clearness of exposition and the way the book is structured. Very nice is, for instance, the ... table of the decompositions of Lie groups." (Sergio Console, Zentralblatt MATH, Vol. 973, 2001)

Read More Show Less

Product Details

  • ISBN-13: 9780387951157
  • Publisher: Springer New York
  • Publication date: 6/21/2001
  • Series: Springer Monographs in Mathematics Series
  • Edition description: 2001
  • Edition number: 1
  • Pages: 426
  • Product dimensions: 9.21 (w) x 6.14 (h) x 1.00 (d)

Table of Contents

Acknowledgments
Overview
Table of the Decompositions
Ch. I Iwasawa Decomposition and Positivity 1
Ch. II Invariant Differential Operators and the Iwasawa Direct Image 33
Ch. III Characters, Eigenfunctions, Spherical Kernel and W-Invariance 75
Ch. IV Convolutions, Spherical Functions and the Mellin Transform 131
Ch. V Gelfand - Naimark Decomposition and the Harish-Chandra c-Function 177
Ch. VI Polar Decomposition 219
Ch. VII The Casimir Operator 255
Ch. VIII The Harish-Chandra Series and Spherical Inversion 277
Ch. IX General Inversion Theorems 309
Ch. X The Harish-Chandra Schwartz Space (HCS) and Anker's Proof of Inversion 325
Ch. XI Tube Domains and the L[superscript 1](Even L[superscript P]) HCS Spaces 373
Ch. XII SL[subscript n] (C) 387
Bibliography 411
Table of Notation 419
Index 423
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)