BN.com Gift Guide

Squares

Paperback (Print)
Buy New
Buy New from BN.com
$71.14
Used and New from Other Sellers
Used and New from Other Sellers
from $44.98
Usually ships in 1-2 business days
(Save 41%)
Other sellers (Paperback)
  • All (8) from $44.98   
  • New (4) from $74.42   
  • Used (4) from $44.98   

Overview

This work is a self-contained treatise on the research conducted on squares by Pfister, Hilbert, Hurwitz, and others. Many classical and modern results and quadratic forms are brought together in this book, and the treatment requires only a basic knowledge of rings, fields, polynomials, and matrices. The author deals with many different approaches to the study of squares, from the classical works of the late nineteenth century, to areas of current research.

Read More Show Less

Editorial Reviews

From the Publisher
"A well-written, unpretentious introduction to squares and sums of squares in fields." American Mathematical Monthly

"...Rajwade's exposition...is richly detailed: the reader is not forced to reproduce complicated algebraic calculations just to follow the arguments. Even more delightful is how Rajwade approaches the frontiers of current research in certain aspects of the algebraic theory of quadratic forms without significantly increasing demands on the reader! Highly recommended." D.V. Feldman, Choice

"Anyone wanting to learn something about the algebraic theory of quadratic forms will find this book useful. It is written at an elementary level, accessible to undergraduate students. At the same time, it contains several important topics, including the classical theorems of Hilbert, Hurwitz and Radon, not covered in the standard references." Murray Marshall, Mathematical Reviews

"...this book includes beautiful and important mathematics which can be explained at a fairly elementary level. Many of these theorems have appeared only in research journals and certainly deserve to be advertised in expository books and appreciated by a wide audience." Daniel B. Shapiro, The American Mathematical Monthly

Read More Show Less

Product Details

Table of Contents

1. The theorem of Hurwitz; 2. The 2n theorems and the Stufe of fields; 3. Examples of the Stufe of fields and related topics; 4. Hilbert's 17th problem; 5. Positive definite functions and sums of squares; 6. An introduction to Hilbert's theorem; 7. The two proofs of Hilbert's theorem; 8. Theorems of Reznick and Choi, Lam and Reznick; 9. Theorems of Choi, Calderon and Robinson; 10. The theorem of Hurwitz–Radon; 11. An introduction to quadratic form theory; 12. The theory of multiplicative forms and Pfister forms; 13. The Hopf condition; 14. Examples of bilinear identities and a theorem of Gabel; 15. Artin–Schreier theory of formally real fields; 16. Squares and sums of squares in fields and their extension fields; 17. Pourchet's theorem and related results; 18. Examples of the Stufe and Pythagoras number of fields using the Hasse–Minkowski theorem; Appendix: Reduction of matrices to canonical form.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)