Stability of Functional Equations in Several Variables

Overview

The notion of stability of functional equations has been an area of revision and development for the past 20 years, having its origins more than half a century ago when S. Ulam posed the fundamental problem and D. H. Hyers gave the first significant partial solution. This volume is unique in that (to date) none exists as a comprehensive examination to the subject.

The authors present both classical results and their original research in an integrated and self-contained fashion. ...

See more details below
Paperback (Softcover reprint of the original 1st ed. 1998)
$128.04
BN.com price
(Save 19%)$159.00 List Price
Other sellers (Paperback)
  • All (5) from $127.26   
  • New (3) from $127.26   
  • Used (2) from $202.73   
Sending request ...

Overview

The notion of stability of functional equations has been an area of revision and development for the past 20 years, having its origins more than half a century ago when S. Ulam posed the fundamental problem and D. H. Hyers gave the first significant partial solution. This volume is unique in that (to date) none exists as a comprehensive examination to the subject.

The authors present both classical results and their original research in an integrated and self-contained fashion. Apart from the main topic of the stability of certain functional equations, related problems are discussed. These include the stability of the convex functional inequality and the stability of minimum points. The techniques used require some basic knowledge of functional analysis, algebra, and topology.

The text could be used in graduate seminars or by researchers in the field.

Read More Show Less

Editorial Reviews

From the Publisher

"…The book under review is an exhaustive presentation of the results in the field, not called Hyers-Ulam stability. It contains chapters on approximately additive and linear mappings, stability of the quadratic functional equation, approximately multiplicative mappings, functions with bounded differences, approximately convex functions. The book is of interest not only for people working in functional equations but also for all mathematicians interested in functional analysis."

–Zentralblatt Math

"Contains survey results on the stability of a wide class of functional equations and therefore, in particular, it would be interesting for everyone who works in functional equations theory as well as in the theory of approximation."

–Mathematical Reviews

Read More Show Less

Product Details

Table of Contents

Prologue.- 1. Introduction.- 2. Approximately Additive and Approximately Linear Mappings.- 3. Stability of the Quadratic Functional Equation.- 4. Generalizations. The Method of Invariant Means.- 5. Approximately Multiplicative Mappings. Superstability.- 6. The Stability of Functional Equations for Trigonometric and Similar Functions.- 7. Functions with Bounded nth Differences.- 8. Approximately Convex Functions.- 9. Stability of the Generalized Orthogonality Functional Equation.- 10. Stability and Set-Valued Functions.- 11. Stability of Stationary and Minimum Points.- 12. Functional Congruences.- 13. Quasi-Additive Functions and Related Topics.- References.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)