×

Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

State Space and Unobserved Component Models: Theory and Applications
     

State Space and Unobserved Component Models: Theory and Applications

by Andrew Harvey, Siem Jan Koopman, Neil Shephard, J. Durbin
 

See All Formats & Editions

ISBN-10: 052183595X

ISBN-13: 9780521835954

Pub. Date: 06/28/2004

Publisher: Cambridge University Press

Offering a broad overview of the state-of-the-art developments in the theory and applications of state space modeling, fourteen chapters from twenty-three contributors present a unique synthesis of state space methods and unobserved component models important in a wide range of subjects. They include economics, finance, environmental science, medicine and

Overview

Offering a broad overview of the state-of-the-art developments in the theory and applications of state space modeling, fourteen chapters from twenty-three contributors present a unique synthesis of state space methods and unobserved component models important in a wide range of subjects. They include economics, finance, environmental science, medicine and engineering. A useful reference for all researchers and students who use state space methodology, this accessible volume makes a significant contribution to the advancement of the discipline.

Product Details

ISBN-13:
9780521835954
Publisher:
Cambridge University Press
Publication date:
06/28/2004
Pages:
394
Product dimensions:
6.85(w) x 9.72(h) x 1.18(d)

Table of Contents

Part I. State Space Models: 1. Introduction to state space time series analysis James Durbin; 2. State structure, decision making and related issues Peter Whittle; 3. An introduction to particle filters Simon Maskell; Part II. Testing: 4. Frequence domain and wavelet-based estimation for long-memory signal plus noise models Katsuto Tanaka; 5. A goodness-of-fit test for AR (1) models and power against state-space alternatives T. W. Anderson and Michael A. Stephens; 6. Test for cycles Andrew C. Harvey; Part III. Bayesian Inference and Bootstrap: 7. Efficient Bayesian parameter estimation Sylvia Frühwirth-Schnatter; 8. Empirical Bayesian inference in a nonparametric regression model Gary Koop and Dale Poirier; 9. Resampling in state space models David S. Stoffer and Kent D. Wall; Part IV. Applications: 10. Measuring and forecasting financial variability using realised variance Ole E. Barndorff-Nielsen, Bent Nielsen, Neil Shephard and Carla Ysusi; 11. Practical filtering for stochastic volatility models Jonathan R. Stroud, Nicholas G. Polson and Peter Müller; 12. On RegComponent time series models and their applications William R. Bell; 13. State space modeling in macroeconomics and finance using SsfPack in S+Finmetrics Eric Zivot, Jeffrey Wang and Siem Jan Koopman; 14. Finding genes in the human genome with hidden Markov models Richard Durbin.

Customer Reviews

Average Review:

Post to your social network

     

Most Helpful Customer Reviews

See all customer reviews