Statistical Analysis of Stochastic Processes in Time
This introduction to ways of modelling a wide variety of phenomena that occur over time is accessible to anyone with a basic knowledge of statistical ideas. J.K. Lindsey concentrates on tractable models involving simple processes for which explicit probability models, hence likelihood functions, can be specified. (These models are the most useful in statistical applications modelling empirical data.) Examples are drawn from physical, biological and social sciences, to show how the book's underlying ideas can be applied, and data sets and R code are supplied for them. Author resource page: http://popgen.unimaas.nl/~jlindsey/books.html
1100945822
Statistical Analysis of Stochastic Processes in Time
This introduction to ways of modelling a wide variety of phenomena that occur over time is accessible to anyone with a basic knowledge of statistical ideas. J.K. Lindsey concentrates on tractable models involving simple processes for which explicit probability models, hence likelihood functions, can be specified. (These models are the most useful in statistical applications modelling empirical data.) Examples are drawn from physical, biological and social sciences, to show how the book's underlying ideas can be applied, and data sets and R code are supplied for them. Author resource page: http://popgen.unimaas.nl/~jlindsey/books.html
117.0 In Stock
Statistical Analysis of Stochastic Processes in Time

Statistical Analysis of Stochastic Processes in Time

by J. K. Lindsey
Statistical Analysis of Stochastic Processes in Time

Statistical Analysis of Stochastic Processes in Time

by J. K. Lindsey

Hardcover(New Edition)

$117.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This introduction to ways of modelling a wide variety of phenomena that occur over time is accessible to anyone with a basic knowledge of statistical ideas. J.K. Lindsey concentrates on tractable models involving simple processes for which explicit probability models, hence likelihood functions, can be specified. (These models are the most useful in statistical applications modelling empirical data.) Examples are drawn from physical, biological and social sciences, to show how the book's underlying ideas can be applied, and data sets and R code are supplied for them. Author resource page: http://popgen.unimaas.nl/~jlindsey/books.html

Product Details

ISBN-13: 9780521837415
Publisher: Cambridge University Press
Publication date: 08/02/2004
Series: Cambridge Series in Statistical and Probabilistic Mathematics , #14
Edition description: New Edition
Pages: 354
Product dimensions: 7.01(w) x 10.00(h) x 0.83(d)

Table of Contents

Preface; Part I. Basic Principles: 1. What is a stochastic process?; 2. Normal theory models and extensions; Part II. Categorical State Space: 3. Survival processes; 4. Recurrent events; 5. Discrete-time Markov chains; 6. Event histories; 7. Dynamics models; 8. More complex dependencies; Part III. Continuous State Space: 9. Time series; 10. Growth curves; 11. Dynamic models; 12. Repeated measurements; Bibliography; Author index; Subject index.
From the B&N Reads Blog

Customer Reviews