Statistical Learning Theory and Stochastic Optimization: Ecole d'Eté de Probabilités de Saint-Flour XXXI - 2001 / Edition 1

Paperback (Print)
Buy New
Buy New from BN.com
$56.03
Used and New from Other Sellers
Used and New from Other Sellers
from $52.40
Usually ships in 1-2 business days
(Save 25%)
Other sellers (Paperback)
  • All (5) from $52.40   
  • New (4) from $52.40   
  • Used (1) from $120.99   

Overview

Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of shastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results.

Read More Show Less

Editorial Reviews

From the Publisher
From the reviews:

"This book is based on a course of lectures given by the author on a circle of ideas lying at the interface of information theory, statistical learning theory and statistical interference. … The book is perhaps the first ever compendium of this circle of ideas and will be a valuable resource for researchers in information theory, statistical learning theory and statistical inference." (Vivek S. Borkar, Mathematical Reviews, Issue 2006 d)

Read More Show Less

Product Details

  • ISBN-13: 9783540225720
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 10/15/2004
  • Series: Lecture Notes in Mathematics Series , #1851
  • Edition description: 2004
  • Edition number: 1
  • Pages: 284
  • Product dimensions: 0.61 (w) x 9.21 (h) x 6.14 (d)

Table of Contents

Universal Lossless Data Compression.- Links Between Data Compression and Statistical Estimation.- Non Cumulated Mean Risk.- Gibbs Estimators.- Randomized Estimators and Empirical Complexity.- Deviation Inequalities.- Markov Chains with Exponential Transitions.- References.- Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)