Statistical Methods for Environmental Epidemiology with R: A Case Study in Air Pollution and Health / Edition 1

Paperback (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $48.44
Usually ships in 1-2 business days
(Save 39%)
Other sellers (Paperback)
  • All (11) from $48.44   
  • New (9) from $48.44   
  • Used (2) from $78.99   

Overview

Advances in statistical methodology and computing have played an important role in allowing researchers to more accurately assess the health effects of ambient air pollution. The methods and software developed in this area are applicable to a wide array of problems in environmental epidemiology. This book provides an overview of the methods used for investigating the health effects of air pollution and gives examples and case studies in R which demonstrate the application of those methods to real data. The book will be useful to statisticians, epidemiologists, and graduate students working in the area of air pollution and health and others analyzing similar data.

The authors describe the different existing approaches to statistical modeling and cover basic aspects of analyzing and understanding air pollution and health data. The case studies in each chapter demonstrate how to use R to apply and interpret different statistical models and to explore the effects of potential confounding factors. A working knowledge of R and regression modeling is assumed. In-depth knowledge of R programming is not required to understand and run the examples.

Researchers in this area will find the book useful as a &'grave;live'' reference. Software for all of the analyses in the book is downloadable from the web and is available under a Free Software license. The reader is free to run the examples in the book and modify the code to suit their needs. In addition to providing the software for developing the statistical models, the authors provide the entire database from the National Morbidity Mortality and Air Pollution Study (NMMAPS) in a convenient R package. With the database, readers can run the examples and experiment with their own methods and ideas.

Roger D. Peng is an Assistant Professor in the Department of Biostatistics at the Johns Hopkins Bloomberg School of Public Health. He is a prominent researcher in the areas of air pollution and health risk assessment and statistical methods for spatial and temporal data. Dr. Peng is the author of numerous R packages and is a frequent contributor to the R mailing lists.

Francesca Dominici is a Professor in the Department of Biostatistics at the Johns Hopkins Bloomberg School of Public Health. She has published extensively on hierarchical and semiparametric modeling and has been the leader of major national studies of the health effects of air pollution. She has also participated in numerous panels conducted by the National Academy of Science assessing the health effects of environmental exposures and has consulted for the US Environmental Protection Agency's Clean Air Act Advisory Board.

Read More Show Less

Editorial Reviews

From the Publisher
From the Reviews:
"This volume is another in the Springer series, Use R!.… It differs somewhat with respect to others in the series in a t least two ways. One of course is that it focuses on environmental epidemiology but more importantly on reproducible research. The authors strongly emphasize reproducible research and all of the example analyses in the book are made available by the use of the R package cacher, written by the first author.… It is organized around case studies using two public databases, NMMAPS and MCAPS, both of which are available in R packages.… As noted ‘reproducibility’ is a principal theme in this volume. This idea has received considerable attention by other authors, although the use of the cacher package seems to be new." (Donald E. Myers, Technometrics, August 2009, VOL. 51, NO. 3)
"What makes this book interesting to me is not the precise final form of the regression model, the technical expertise shown in fitting the model, or even the posterior distributions of the parameters. I happen to be interested in air pollution, and a large, clean, and well-organized environmental health database makes me feel all warm inside. Add the way data are handled, stored, manipulated int his book, and the way in which the analyses are cached and can be completely retrieved by anybody who is interested. That, I think, is its most important contribution." (Jan de Leeuw, Journal of Statistical Software, 2008)
“This book bridges the theory and implementation of statistical methods for air pollution risk estimation in multisite time-series data, relying primarily on data from the National Morbidity Mortality Air Pollution Study (NMMAPS) for examples. The implementation of methods relies exclusively on the R statistical software. The authors are both recognized experts in the statistical analysis of the health effects of air pollution and Professor Peng is also well known within the R community. …The general approach taken by the authors, to combine leading statistical theory in this area with clearly worked examples in R, fills an important gap in materials available for learning how to conduct such analyses. Students and researchers frequently obtain through books and coursework a general understanding of the theory relevant to a particular problem, but less frequently do they receive practical guidance in how to use available software to put the theory into practice. This book addresses exactly this gap in the context of additive time-series, and Bayesian hierarchical models applied to time series of air pollution and health data. …the writing is clear… . The described software and cached analysis were easy to download and run as described in the book and it was relatively straightforward to work through the analyses exactly as described. …the authors …make a strong argument for how R can be used to support reproducible research … .” (Biometrics, Summer 2009, 65, 996–997)
Read More Show Less

Product Details

  • ISBN-13: 9780387781662
  • Publisher: Springer New York
  • Publication date: 7/25/2008
  • Series: Use R! Series
  • Edition description: 2008
  • Edition number: 1
  • Pages: 144
  • Sales rank: 1,408,514
  • Product dimensions: 6.10 (w) x 9.20 (h) x 0.40 (d)

Table of Contents

Studies of air pollution and health. - Introduction to R and air pollution and health data. - Reproducible research tools. - Statistical issues in estimating the health effects of spatial-temporal environmental exposures. - Exploratory data analyses. - Statistical models. - Pooling risks across locations and quantifying spatial heterogeneity. -A reproducible seasonal analysis of PM10 and mortaility in the U.S.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
  • Anonymous

    Posted March 23, 2011

    No text was provided for this review.

Sort by: Showing 1 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)