×

Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Storing Clocked Programs Inside Dna
     

Storing Clocked Programs Inside Dna

by Jessica P. Chang, Dennis E. Shasha
 

In the history of modern computation, large mechanical calculators preceded computers. A person would sit there punching keys according to a procedure and a number would eventually appear. Once calculators became fast enough, it became obvious that the critical path was the punching rather than the calculation itself. That is what made the stored program concept

Overview

In the history of modern computation, large mechanical calculators preceded computers. A person would sit there punching keys according to a procedure and a number would eventually appear. Once calculators became fast enough, it became obvious that the critical path was the punching rather than the calculation itself. That is what made the stored program concept vital to further progress. Once the instructions were stored in the machine, the entire computation could run at the speed of the machine. This book shows how to do the same thing for DNA computing. Rather than asking a robot or a person to pour in specific strands at different times in order to cause a DNA computation to occur (by analogy to a person punching numbers and operations into a mechanical calculator), the DNA instructions are stored within the solution and guide the entire computation. We show how to store straight line programs, conditionals, loops, and a rudimentary form of subroutines. To achieve this goal, the book proposes a complete language for describing the intrinsic topology of DNA complexes and nanomachines, along with the dynamics of such a system. We then describe dynamic behavior using a set of basic transitions, which operate on a small neighborhood within a complex in a well-defined way. These transitions can be formalized as purely syntactical functions of the string representations. Building on that foundation, the book proposes a novel machine motif which constitutes an instruction stack, allowing for the clocked release of an arbitrary sequence of DNA instruction or data strands. The clock mechanism is built of special strands of DNA called "tick" and "tock." Each time a "tick" and "tock" enter a DNA solution, a strand is released from an instruction stack (by analogy to the way in which as a clock cycle in an electronic computer causes a new instruction to enter a processing unit). As long as there remain strands on the stack, the next cycle will

Product Details

ISBN-13:
9781608456956
Publisher:
Morgan & Claypool Publishers
Publication date:
04/21/2011
Series:
Synthesis Lectures on Computer Science Series
Pages:
80
Sales rank:
671,287
Product dimensions:
7.30(w) x 9.00(h) x 0.20(d)

Customer Reviews

Average Review:

Post to your social network

     

Most Helpful Customer Reviews

See all customer reviews