Stratified Lie Groups and Potential Theory for Their Sub-Laplacians / Edition 1

Paperback (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $86.39
Usually ships in 1-2 business days
(Save 20%)
Other sellers (Paperback)
  • All (4) from $86.39   
  • New (4) from $86.39   


This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.

Read More Show Less

Editorial Reviews

From the Publisher
From the reviews:

"The book is about sub-Laplacians on stratified Lie groups. The authors present the material using an elementary approach. They achieve the level of current research starting from the basic notions of differential geometry and Lie group theory. The book is full of extensive examples which illustrate the general problems and results. Exercises are included at the end of each chapter. … The book is clearly and carefully written. It will be useful for both the graduate student and researchers in different areas." (Roman Urban, Zentralblatt MATH, Vol. 1128 (6), 2008)

"The monograph under review is a comprehensive treatment of many interesting results regarding subelliptic partial differential equations. The first aim of this book is to give a complete overview on stratified Lie groups and their Lie algebras of left-invariant vector fields. … addressed to specialists in this area." (Maria Stella Fanciullo, Mathematical Reviews, Issue 2009 m)

Read More Show Less

Product Details

  • ISBN-13: 9783642090998
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 11/10/2010
  • Series: Springer Monographs in Mathematics Series
  • Edition description: Softcover reprint of hardcover 1st ed. 2007
  • Edition number: 1
  • Pages: 802
  • Product dimensions: 1.65 (w) x 6.14 (h) x 9.21 (d)

Meet the Author


—Education and Undergraduate Studies: Dec. 1966, Universita' di Bologna (Mathematics).


1975-present: Full Professor of Mathematical Analysis at Dipartimento di Matematica, Universita' di Bologna (Italy); Member of the "Accademia dell'Istituto di Bologna" and of the "Accademia delle Scienze, Lettere ed Arti di Modena".

1968-1975: Theaching Assistant at Istituto di Matematica, Universita' di Bologna.

—Academic activity:

Director of the Istituto di Matematica di Bologna(1978/80),

Director of the Undergraduate Mathematics Program, University of Bologna (1990/1999, 2000-2002, 2006-present)

Director of PHD program, University of Bologna (1986/91, 1997/2000)


-University of Minnesota, Minneapolis (USA)

-University of Purdue, West La Fayette, Indiana (USA)

-Temple University, Philadelphia, Pennsylvania (USA)

-Rutgers University, New Brunswick, New Jersey (USA)

-University of Bern, Switzerland

— Specialization main fields: Partial Differential Equations, Potential



Second order linear and nonlinear partial differential equations with non- negative characteristic form and application to complex geometry and diffusion processes.

Potential Theory and Harmonic Analysis in sub-riemannian settings.

Real analysis and geometric methods.

—EDITORIAL BOARD: Nonlinear Differential Equations and Applications, Birkhauser.

—PUBLICATIONS: More than 70 papers in refereed journals.


—Education and Undergraduate Studies: Dec. 1994, Universita' di Bologna (Mathematics)


February 2000: Ph.D. in Mathematical Analysis at Dipartimento di Matematica, Universita' di Bologna (Italy).

October 1998: Assistant Professor at Dipartimento di Matematica, Universita' di Bologna.


Second order linear and nonlinear partial differential equations with non- negative characteristic form and applications. Harmonic Analysis in sub- riemannian settings.

—PUBLICATIONS: About 30 papers in refereed journals.


—Education and Undergraduate Studies: July 1998, Universita' di Bologna (Mathematics)


March 2002: Ph.D. in Mathematical Analysis at Dipartimento di Matematica, Universita' di Bologna (Italy).

November 2006: Assistant Professor at Dipartimento di Matematica, Universita' di Bologna.


Second order linear partial differential equations with non-negative characteristic form and applications. Potential Theory in stratified Lie groups.

—PUBLICATIONS: About 20 papers in refereed journals.

Read More Show Less

Table of Contents

Elements of Analysis of Stratified Groups.- Stratified Groups and Sub-Laplacians.- Abstract Lie Groups and Carnot Groups.- Carnot Groups of Step Two.- Examples of Carnot Groups.- The Fundamental Solution for a Sub-Laplacian and Applications.- Elements of Potential Theory for Sub-Laplacians.- Abstract Harmonic Spaces.- The—-harmonic Space.-—-subharmonic Functions.- Representation Theorems.- Maximum Principle on Unbounded Domains.-—-capacity,—-polar Sets and Applications.-—-thinness and—-fine Topology.- d-Hausdorff Measure and—-capacity.- Further Topics on Carnot Groups.- Some Remarks on Free Lie Algebras.- More on the Campbell–Hausdorff Formula.- Families of Diffeomorphic Sub-Laplacians.- Lifting of Carnot Groups.- Groups of Heisenberg Type.- The Carathéodory–Chow–Rashevsky Theorem.- Taylor Formula on Homogeneous Carnot Groups.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)