Strength or Accuracy: Credit Assignment in Learning Classifier Systems / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $45.60
Usually ships in 1-2 business days
(Save 75%)
Other sellers (Hardcover)
  • All (8) from $45.60   
  • New (5) from $139.50   
  • Used (3) from $45.60   


The Distinguished Dissertations series is published on behalf of the Conference of Professors and Heads of Computing and the British Computer Society, who annually select the best British PhD dissertations in computer science for publication. The dissertations are selected on behalf of the CPHC by a panel of eight academics. Each dissertation chosen makes a noteworthy contribution to the subject and reaches a high standard of exposition, placing all results clearly in the context of computer science as a whole. In this way computer scientists with significantly different interests are able to grasp the essentials - or even find a means of entry - to an unfamiliar research topic. Machine learning promises both to create machine intelligence and to shed light on natural intelligence. A fundamental issue for either endevour is that of credit assignment, which we can pose as follows: how can we credit individual components of a complex adaptive system for their often subtle effects on the world? For example, in a game of chess, how did each move (and the reasoning behind it) contribute to the outcome? This text studies aspects of credit assignment in learning classifier systems, which combine evolutionary algorithms with reinforcement learning methods to address a range of tasks from pattern classification to shastic control to simulation of learning in animals. Credit assignment in classifier systems is complicated by two features: 1) their components are frequently modified by evolutionary search, and 2) components tend to interact. Classifier systems are re-examined from first principles and the result is, primarily, a formalization of learning in these systems, and a body of theory relating types of classifier systems, learning tasks, and credit assignment pathologies. Most significantly, it is shown that both of the main approaches have difficulties with certain tasks, which the other type does not.

Read More Show Less

Editorial Reviews

From the Publisher

From the reviews:

"This book is a monograph on learning classifier systems … . The main objective of the book is to compare strength-based classifier systems with accuracy-based systems. … The book is equipped with nine appendices. … The biggest advantage of the book is its readability. The book is well written and is illustrated with many convincing examples." (Jerzy W. Grzymal-Busse, Mathematical Reviews, Issue 2005 k)

Read More Show Less

Product Details

  • ISBN-13: 9781852337704
  • Publisher: Springer London
  • Publication date: 1/20/2004
  • Series: Distinguished Dissertations Series
  • Edition description: 2004
  • Edition number: 1
  • Pages: 307
  • Product dimensions: 0.75 (w) x 6.14 (h) x 9.21 (d)

Table of Contents

Introduction.- Learning Classifier Systems.- How Strength and Accuracy Differ.- What Should a Classifier System Learn?- Prospects for Adaption.- Classifier Systems and Q-Learning.- Conclusion.- Appendices.- Evaluation of Macroclassifiers.- Example XCS Cycle.- Learning from Reinforcement.- Generalisation Problems.- Value Estimation Algorithms.- Generalised Policy Iteration Algorithms.- Evolutionary Algorithms.- The Origins of Sarsa.- Notation.- References.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)