Features downloadable tools to supplement material found in the book
Recent advances in camera sensor technology have led to an increasingly larger number of pixels being crammed into ever-smaller spaces. This has resulted in an overall decline in the visual quality of recorded content, necessitating improvement of images through the use of post-processing. Providing a snapshot of the cutting edge in super-resolution imaging, this book focuses on methods and techniques to improve images and video beyond the capabilities of the sensors that acquired them. It covers:
- History and future directions of super-resolution imaging
- Locally adaptive processing methods versus globally optimal methods
- Modern techniques for motion estimation
- How to integrate robustness
- Bayesian statistical approaches
- Learning-based methods
- Applications in remote sensing and medicine
- Practical implementations and commercial products based on super-resolution
The book concludes by concentrating on multidisciplinary applications of super-resolution for a variety of fields. It covers a wide range of super-resolution imaging implementation techniques, including variational, feature-based, multi-channel, learning-based, locally adaptive, and nonparametric methods. This versatile book can be used as the basis for short courses for engineers and scientists, or as part of graduate-level courses in image processing.
Features downloadable tools to supplement material found in the book
Recent advances in camera sensor technology have led to an increasingly larger number of pixels being crammed into ever-smaller spaces. This has resulted in an overall decline in the visual quality of recorded content, necessitating improvement of images through the use of post-processing. Providing a snapshot of the cutting edge in super-resolution imaging, this book focuses on methods and techniques to improve images and video beyond the capabilities of the sensors that acquired them. It covers:
- History and future directions of super-resolution imaging
- Locally adaptive processing methods versus globally optimal methods
- Modern techniques for motion estimation
- How to integrate robustness
- Bayesian statistical approaches
- Learning-based methods
- Applications in remote sensing and medicine
- Practical implementations and commercial products based on super-resolution
The book concludes by concentrating on multidisciplinary applications of super-resolution for a variety of fields. It covers a wide range of super-resolution imaging implementation techniques, including variational, feature-based, multi-channel, learning-based, locally adaptive, and nonparametric methods. This versatile book can be used as the basis for short courses for engineers and scientists, or as part of graduate-level courses in image processing.

Super-Resolution Imaging
496
Super-Resolution Imaging
496Hardcover(New Edition)
Related collections and offers
Product Details
ISBN-13: | 9781439819302 |
---|---|
Publisher: | Taylor & Francis |
Publication date: | 09/28/2010 |
Series: | Digital Imaging and Computer Vision |
Edition description: | New Edition |
Pages: | 496 |
Product dimensions: | 6.20(w) x 9.10(h) x 1.30(d) |