System Dynamics: Modeling and Simulation of Mechatronic Systems / Edition 4

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $16.95
Usually ships in 1-2 business days
(Save 88%)
Other sellers (Hardcover)
  • All (10) from $16.95   
  • New (6) from $78.70   
  • Used (4) from $16.95   


A revision of the bestselling system dynamics book using the bond graph approach

System Dynamics is a cornerstone resource for engineers faced with the evermore-complex job of designing mechatronic systems involving any number of electrical, mechanical, hydraulic, pneumatic, thermal, and magnetic subsystems. This updated Fourth Edition offers the latest coverage on one of the most important design tools today-bond graph modeling-the powerful, unified graphic modeling language.

The only comprehensive guide to modeling, designing, simulating, and analyzing dynamic systems comprising a variety of technologies and energy domains, System Dynamics, Fourth Edition continues the previous edition's step-by-step approach to creating dynamic models. The first six chapters have been improved to make the material much more understandable for those unfamiliar with physical system modeling. The presentation starts with the basic elements and leads to sophisticated mathematical models suitable for automated computer simulation. The new edition incorporates the authors' vast experience in teaching the topics to undergraduate and graduate students over many years and features expanded coverage of topics including:
* New expositions of modeling methods for electrical, mechanical, and hydraulic systems
* New sections on mechanical systems in plane and three-dimensional motion
* New sections on hydraulic and acoustic systems

This Fourth Edition continues to stress all the essentials-from basic hand formulation of simple bond graph models to the automatic simulation of complex mechatronic systems. It offers updated examples of multi-energy domain systems as well as:
* Discussions of state-of-the-art simulation software for use with bond graph models
* Presentations of a multiport modeling philosophy based on power and energy interactions
* Methods for understanding system characteristics and predicting system behaviors
* The use of graphical depictions of dynamic systems that can be translated automatically into complex mathematical models for computer simulation

Read More Show Less

Product Details

  • ISBN-13: 9780471709657
  • Publisher: Wiley, John & Sons, Incorporated
  • Publication date: 1/3/2006
  • Edition description: Revised Edition
  • Edition number: 4
  • Pages: 576
  • Product dimensions: 6.44 (w) x 9.33 (h) x 1.50 (d)

Meet the Author

DEAN C. KARNOPP and DONALD L. MARGOLIS are Professors of Mechanical Engineering at the University of California, Davis.

RONALD C. ROSENBERG is Professor of Mechanical Engineering at Michigan State University.

Read More Show Less

Table of Contents


1 Introduction.

1.1 Models of Systems.

1.2 Systems, Subsystems, and Components.

1.3 State-Determined Systems.

1.4 Uses of Dynamic Models.

1.5 Linear and Nonlinear Systems.

1.6 Automated Simulation.



2 Multiport Systems and Bond Graphs.

2.1 Engineering Multiports.

2.2 Ports, Bonds, and Power.

2.3 Bond Graphs.

2.4 Inputs, Outputs, and Signals.


3 Basic Component Models.

3.1 Basic 1-Port Elements.

3.2 Basic 2-Port Elements.

3.3 The 3-Port Junction Elements.

3.4 Causality Considerations for the Basic Multiports.

3.4.1 Causality for Basic 1-Ports.

3.4.2 Causality for Basic 2-Ports and 3-Ports.

3.5 Causality and Block Diagrams.

3.6 Pseudo–Bond Graphs and Thermal Systems.



4 System Models.

4.1 Electrical Systems.

4.1.1 Electrical Circuits.

4.1.2 Electrical Networks.

4.2 Mechanical Systems.

4.2.1 Mechanics of Translation.

4.2.2 Fixed-Axis Rotation.

4.2.3 Plane Motion.

4.3 Hydraulic and Acoustic Circuits.

4.3.1 Fluid Resistance.

4.3.2 Fluid Capacitance.

4.3.3 Fluid Inertia.

4.3.4 Fluid Circuit Construction.

4.3.5 An Acoustic Circuit Example.

4.4 Transducers and Multi-Energy-Domain Models.

4.4.1 Transformer Transducers.

4.4.2 Gyrator Transducers.

4.4.3 Multi-Energy-Domain Models.



5 State-Space Equations and Automated Simulation.

5.1 Standard Form for System Equations.

5.2 Augmenting the Bond Graph.

5.3 Basic Formulation and Reduction.

5.4 Extended Formulation Methods—Algebraic Loops.

5.4.1 Extended Formulation Methods—Derivative Causality.

5.5 Output Variable Formulation.

5.6 Automated and Nonlinear Simulation.

5.6.1 Nonlinear Simulation.

5.6.2 Automated Simulation.



6 Analysis of Linear Systems.

6.1 Introduction.

6.2 Solution Techniques for Ordinary Differential Equations.

6.3 Free Response and Eigenvalues.

6.3.1 A First-Order Example.

6.3.2 Second-Order Systems.

6.3.3 Example: The Undamped Oscillator.

6.3.4 Example: The Damped Oscillator.

6.3.5 The General Case.

6.4 Forced Response and Frequency Response Functions.

6.4.1 Normalization of Response Curves.

6.4.2 The General Case.

6.5 Transfer Functions.

6.5.1 Block Diagrams.

6.6 Total Response.

6.7 Alternative State Variables.



7 Multiport Fields and Junction Structures.

7.1 Energy-Storing Fields.

7.1.1 C-Fields.

7.1.2 Causal Considerations for C-Fields.

7.1.3 I-Fields.

7.1.4 Mixed Energy-Storing Fields.

7.2 Resistive Fields.

7.3 Modulated 2-Port Elements.

7.4 Junction Structures.

7.5 Multiport Transformers.



8 Transducers, Amplifiers, and Instruments.

8.1 Power Transducers.

8.2 Energy-Storing Transducers.

8.3 Amplifiers and Instruments.

8.4 Bond Graphs and Block Diagrams for Controlled Systems.



9 Mechanical Systems with Nonlinear Geometry.

9.1 Multidimensional Dynamics.

9.2 Kinematic Nonlinearities in Mechanical Dynamics.

9.2.1 The Basic Modeling Procedure.

9.2.2 Multibody Systems.

9.2.3 Lagrangian or Hamiltonian IC-Field Representations.

9.3 Application to Vehicle Dynamics.



10 Distributed-Parameter Systems.

10.1 Simple Lumping Techniques for Distributed Systems.

10.2 Lumped Models of Continua through Separation of Variables.

10.3 General Considerations of Finite-Mode Bond Graphs.

10.4 Assembling Overall System Models.

10.5 Summary.



11 Magnetic Circuits and Devices.

11.1 Magnetic Effort and Flow Variables.

11.2 Magnetic Energy Storage and Loss.

11.3 Magnetic Circuit Elements.

11.4 Magnetomechanical Elements.

11.5 Device Models.



12 Thermofluid Systems.

12.1 Basic Thermodynamics in Bond Graph Form.

12.2 Heat Transfer in True Bond Graphs and Pseudo–Bond Graphs.

12.2.1 A Simple Example.

12.2.2 An Electrothermal Resistor.

12.3 Fluid Dynamic Systems.

12.3.1 One-Dimensional Incompressible Flow.

12.3.2 Representation of Compressibility Effects.

12.3.3 Inertial and Compressibility Effects in One-Dimensional Flow.

12.4 Pseudo–Bond Graphs for Compressible Gas Dynamics.

12.4.1 The Thermodynamic Accumulator.

12.4.2 The Isentropic Nozzle.

12.4.3 Constructing Models with the Thermodynamic Accumulator and Isentropic Nozzle.

12.4.4 Summary.



13 Nonlinear System Simulation.

13.1 Explicit First-Order Differential Equations.

13.2 Differential Algebraic Equations Caused by Algebraic Loops.

13.3 Implicit Equations Caused by Derivative Causality.

13.4 Automated Simulation of Dynamic Systems.

13.4.1 Sorting of Equations.

13.4.2 Implicit and Differential Algebraic Equation Solvers.

13.4.3 Icon-Based Automated Simulation.

13.5 Example Nonlinear Simulation.

13.5.1 Some Simulation Results.

13.6 Conclusions.





Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)