System Parameter Identification: Information Criteria and Algorithms

Overview

Recently, criterion functions based on information theoretic measures (entropy, mutual information, information divergence) have attracted attention and become an emerging area of study in signal processing and system identification domain. This book presents a systematic framework for system identification and information processing, investigating system identification from an information theory point of view. The book is divided into six chapters, which cover the information needed to understand the theory and ...

See more details below
Other sellers (Hardcover)
  • All (10) from $83.72   
  • New (9) from $83.72   
  • Used (1) from $103.26   
System Parameter Identification: Information Criteria and Algorithms

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$120.00
BN.com price

Overview

Recently, criterion functions based on information theoretic measures (entropy, mutual information, information divergence) have attracted attention and become an emerging area of study in signal processing and system identification domain. This book presents a systematic framework for system identification and information processing, investigating system identification from an information theory point of view. The book is divided into six chapters, which cover the information needed to understand the theory and application of system parameter identification. The authors’ research provides a base for the book, but it incorporates the results from the latest international research publications.

  • Named a 2013 Notable Computer Book for Information Systems by Computing Reviews
  • One of the first books to present system parameter identification with information theoretic criteria so readers can track the latest developments
  • Contains numerous illustrative examples to help the reader grasp basic methods
Read More Show Less

Editorial Reviews

From the Publisher
"…almost all of the variables used in the formulas are defined, something I cannot say about many other mathematical books…I found this book timely, interesting, and very well written. Readers can learn about estimation methodologies, the art of proof, and identification of the parameters assumed by the system architect or designer."—ComputingReviews.com, March 5, 2014 "Chen… Zhu, Hu…and Principe…synthesize their recent papers into a single-volume reference on system identification under criteria based on the information theory descriptors of entropy and dissimilarity. They cover information measures, information theoretic parameter estimation, system identification under minimum error entropy criteria, system identification under information divergence criteria, and system identification based on mutual information criteria."—Reference & Research Book News, December 2013
Read More Show Less

Product Details

  • ISBN-13: 9780124045743
  • Publisher: Elsevier Science
  • Publication date: 8/15/2013
  • Pages: 266
  • Product dimensions: 6.20 (w) x 9.10 (h) x 0.90 (d)

Meet the Author

Badong Chen received the B.S. and M.S. degrees in control theory and engineering from Chongqing University, in 1997 and 2003, respectively, and the Ph.D. degree in computer science and technology from Tsinghua University in 2008. He was a Post-Doctoral Researcher with Tsinghua University from 2008 to 2010, and a Post-Doctoral Associate at the University of Florida Computational NeuroEngineering Laboratory (CNEL) during the period October, 2010 to September, 2012. He is currently a professor at the Institute of Artificial Intelligence and Robotics (IAIR), Xi’an Jiaotong University. His research interests are in system identification and control, information theory, machine learning, and their applications in cognition and neuroscience.

Yu Zhu received the B.S. degree in radio electronics in 1983 from Beijing Normal University, and the M.S. degree in computer applications in 1993, and the Ph.D. degree in mechanical design and theory in 2001, both from China University of Mining and Technology. He is currently a professor with the Department of Mechanical Engineering, Tsinghua University. His research field mainly covers IC manufacturing equipment development strategy, ultra-precision air/maglev stage machinery design theory and technology, ultra-precision measurement theory and technology, and precision motion control theory and technology. Prof. Zhu has more than 140 research papers and 100 (48 awarded) invention patents.

Jinchun Hu,associate professor, born in 1972, graduated from Nanjing University of Science & Technology. He received the B.Eng and Ph.D. degrees in control science and engineering in 1994 and 1998, respectively. Now he works at the Department of Mechanical Engineering, Tsinghua University. His current research interests include modern control theory and control systems, ultra-precision measurement principles and methods, micro/nano motion control system analysis and realization, special driver technology and device for precision motion systems, and super-precision measurement & control.

Jose C. Principe is a Distinguished Professor of Electrical and Computer Engineering and Biomedical Engineering at the University of Florida where he teaches advanced signal processing, machine learning and artificial neural networks (ANNs) modeling. He is BellSouth Professor and the Founding Director of the University of Florida Computational NeuroEngineering Laboratory (CNEL). His primary research interests are in advanced signal processing with information theoretic criteria (entropy and mutual information) and adaptive models in reproducing kernel Hilbert spaces (RKHS), and the application of these advanced algorithms to Brain Machine Interfaces (BMI). Dr. Principe is a Fellow of the IEEE, ABME, and AIBME. He is the past Editor in Chief of the IEEE Transactions on Biomedical Engineering, past Chair of the Technical Committee on Neural Networks of the IEEE Signal Processing Society, and Past-President of the International Neural Network Society. He received the IEEE EMBS Career Award, and the IEEE Neural Network Pioneer Award. He has more than 600 publications and 30 patents (awarded or filed).

Read More Show Less

Table of Contents

1.Introduction
2.Information Measures
3.Information Theoretic Estimation
4.System Identification Under Minimum Error Entropy Criteria
5.System Identification Under Information Divergence Criteria
6.System Identification Based on Mutual Information Criteria

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)