BN.com Gift Guide

Systematic Methods of Chemical Process Design (Prentice Hall International Series in the Physical and Chemical Engineering Sciences) / Edition 1

Paperback (Print)
Rent
Rent from BN.com
$34.93
(Save 72%)
Est. Return Date: 02/20/2015
Buy Used
Buy Used from BN.com
$73.47
(Save 40%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $39.34
Usually ships in 1-2 business days
(Save 68%)
Other sellers (Paperback)
  • All (16) from $39.34   
  • New (6) from $113.95   
  • Used (10) from $39.34   

Overview

Brings together all the information engineers and researchers need to develop efficient, cost-effective chemical production processes. The book presents a systematic approach to chemical process design, covering both continuous and batch processes. Starting with the basics, the book then moves on to advanced topics. Among the topics covered are: flowsheet synthesis, mass and energy balances, equipment sizing and costing, economic evaluation, process simulation and optimization. The book also covers specific chemical processes such as distillation systems, reactor networks, separation, and heat exchange networks. It shows how to build more flexible processes, including multiproduct batch processes. Any researcher or practicing engineer involved in designing chemical processes.

Read More Show Less

Product Details

Meet the Author

LORENZ T. BIEGLER is the Bayer Professor of Chemical Engineering at Carnegie Mellon University. A graduate from Illinois Institute of Technology, he holds a Ph.D. in chemical engineering from the University of Wisconsin. He has been a Presidential Young Investigator and has received the Curtis McGraw Award of ASEE.

E. IGNACIO GROSSMANN is Head and the Rudolph R. Dean Professor of Chemical Engineering at Carnegie Mellon. A graduate from Universidad Iberoamericana in Mexico, he holds master's and doctoral degrees in chemical engineering from Imperial College, London. He has also been a Presidential Young Investigator and has received the Computing in Chemical Engineering Award of AICHE.

ARTHUR W. WESTERBERG is the Swearingen University Professor of Chemical Engineering at Carnegie Mellon. A graduate of the University of Minnesota, he holds a master's degree from Princeton and a doctorate from Imperial College, London. Besides winning numerous professional awards, he is a member of the National Academy of Engineering. His book Process Flowsheeting is the standard text in the field of process simulation.

Read More Show Less

Read an Excerpt

Preface

Process design is one of the more exciting activities that a chemical engineer can perform. It involves creative problem solving and teamwork in which basic knowledge in chemical engineering and economics are applied, commonly through the use of computer-based tools, to devise new process systems or modifications to existing plants. The teaching of process design, however, continues to present a major challenge in academia. There are several reasons for this. Faculty who are not actively engaged in doing research in process systems engineering are generally uncomfortable teaching a design course, unless they have had some industrial experience. Another complicating factor is that process design is still perceived among many academics as a subject that is too practical in nature with little fundamental content. Also, there are relatively few textbooks on process design, both at the undergraduate and graduate levels. Finally, teaching design is difficult because problems tend to be open-ended, with incomplete information, and requiring decision making.

Fortunately, process design, and more generally, process systems engineering, has undergone a dramatic change over the last 20 years. During this period many new fundamental and significant advances have taken place. The more or less ad hoc analysis of flowsheets has been replaced by systematic numerical solution techniques that are now widely implemented in computer modeling systems and simulation packages for both preliminary and detailed design. The largely arbitrary selection of parameters in process flowsheets has been replaced by the use of modern optimization strategies. The intuitive development of structures of process flowsheets has been largely replaced by systematic synthesis methods, both in the form of conceptual insights and in the form of advanced discrete optimization techniques. It is from the perspective of the above advances in process design that this textbook has been written: to teach modern and systematic approaches to design. The emphasis is on the application of strategies for preliminary design, on the systematic development of representations for process synthesis, and on the development of mathematical models for simulation and optimization for their use in computer-based solution techniques. The main aim in learning these techniques is to be able to synthesize and design process flowsheets, understanding the decisions involved in the reaction, separation, and heat integration subsystems, as well as their interactions and economic implications. The applications deal mostly with large- scale continuous processes, although some introduction to multiproduct batch processes is given. Also, while economics is used as the main measure for evaluation, a brief exposure to operability and discussion on multiple criteria (safety, environmental impact) is covered.

The book consists of 22 chapters, organized into four major parts: I: Preliminary Analysis and Evaluation of Processes, II: Analysis with Rigorous Process Models, III: Basic Concepts in Process Synthesis, IV: Optimization Approaches to Process Synthesis and Design. An introductory chapter is also presented to give a broader view of process design. The textbook is aimed at senior undergraduate and graduate students in chemical engineering. At the undergraduate level it is intended to be a textbook for the senior design course. Chapters 1 to 11 (except 9) could be typically covered in such a course. Chapters 9 and 15 to 17 of Part IV can be used as part of an undergraduate optimization course. At the graduate level, Chapters 9 to 22 and Appendix A can be used as a basis for an advanced process systems engineering course. Chapters 10 to 22 (Parts III and IV) are aimed specifically at a graduate course in process synthesis. Each chapter contains a set of exercises and references to representative publications. Design practitioners who wish to learn about modern design techniques should find this book useful as a reference text.

It is important to note that this book is not meant to be a research monograph. All the material presented here has been developed and taught extensively in courses at Carnegie Mellon University. For instance, a portion of Part I was first developed by Art Westerberg in 1978, and has gradually evolved since then into lecture notes that are currently used in the Senior Undergraduate Design course. Part II was developed first in the early 1980s for a graduate course taught by Art Westerberg on Advanced Process Engineering. Its current form reflects the lecture notes used by Larry Biegler for an advanced undergraduate/graduate level course on computational design methods. Part III corresponds to lecture notes used by Art Westerberg in a current graduate course on Process Systems Engineering. A portion of Part IV was first developed by Ignacio Grossmann in a course on Special Topics on Advanced Process Engineering course in 1985. In its present form it is being used in the graduate course on Process Systems Engineering. Also note that all the chapters include exercises. Some of these require the use of spreadsheets and modeling systems for optimization (see Appendix A).

The authors would like to acknowledge the many individuals that made this book possible. We express our gratitude to Professor John Anderson for having encouraged us to undertake the task of writing this textbook. Larry Biegler is grateful to the Department of Chemical Engineering for releasing him of teaching duties for one semester to write this book. Ignacio Grossmann is grateful to the School of Chemical Engineering at Cornell University and to the Centre for Process Systems Engineering at Imperial College for having provided time and financial support for his sabbatical leaves in 1986Ð1987, and 1993Ð1994, respectively, in which most of the chapters on Part IV were written. Art Westerberg is grateful to the University of Edinburgh for the time and support he received to prepare portions of this book. The three authors are indebted to the following individuals who have provided us extensive feedback on the book: Dr. Alberto Bandoni, Dr. Mark Daichendt, Professor Truls Gundersen, Dr. Zdravko Kravanja, Dr. Antonis Kokossis, Dr. Guillermo Rotstein, and Professor Ross Swaney. We are also grateful to all our current graduate students at Carnegie Mellon who helped us in the proofreading of the manuscript. Finally, we are most grateful to Dolores Dlugokecki and Laura Shaheen for their help and patience in typing and correcting many of the versions of our manuscript.

Lorenz T. Biegler Ignacio E. Grossmann Arthur W. Westerberg Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA

Read More Show Less

Table of Contents

1. Introduction to Process Design.

I. PRELIMINARY ANALYSIS AND EVALUATION OF PROCESSES.

2. Overview of Flowsheet Synthesis.

3. Mass and Energy Balances.

4. Equipment Sizing and Costing.

5. Economic Evaluation.

6. Design and Scheduling of Batch Processes.

II. ANALYSIS WITH RIGOROUS PROCESS MODELS.

7. Unit Equation Models.

8. General Concepts of Simulation for Process Design.

9. Process Flowsheet Optimization.

III. BASIC CONCEPTS IN PROCESS SYNTHESIS.

10. Heat and Power Integration.

11. Ideal Distillation Systems.

12. Heat Integrated Distillation Processes.

13. Geometric Techniques for the Synthesis of Reactor Networks.

14. Separating Azeotropic Mixtures.

IV. OPTIMIZATION APPROACHES TO PROCESS SYNTHESIS AND DESIGN.

15. Basic Concepts for Algorithmic Methods.

16. Synthesis of Heat Exchanger Networks.

17. Synthesis of Distillation Sequences.

18. Simultaneous Optimization and Heat Integration.

19. Optimization Techniques for Reactor Network Synthesis.

20. Structural Optimization of Process Flowsheets.

21. Process Flexibility.

22. Optimal Design and Scheduling for Multiproduct Batch Plants.

References.

Exercises.

Appendix A.: Summary of Optimization Theory and Methods.

Appendix B.: Smooth Approximations for max { 0, f(x)}.

Appendix C.: Computer Tools for Preliminary Process Design.

Author Index.

Subject Index.

Read More Show Less

Preface

Preface

Process design is one of the more exciting activities that a chemical engineer can perform. It involves creative problem solving and teamwork in which basic knowledge in chemical engineering and economics are applied, commonly through the use of computer-based tools, to devise new process systems or modifications to existing plants. The teaching of process design, however, continues to present a major challenge in academia. There are several reasons for this. Faculty who are not actively engaged in doing research in process systems engineering are generally uncomfortable teaching a design course, unless they have had some industrial experience. Another complicating factor is that process design is still perceived among many academics as a subject that is too practical in nature with little fundamental content. Also, there are relatively few textbooks on process design, both at the undergraduate and graduate levels. Finally, teaching design is difficult because problems tend to be open-ended, with incomplete information, and requiring decision making.

Fortunately, process design, and more generally, process systems engineering, has undergone a dramatic change over the last 20 years. During this period many new fundamental and significant advances have taken place. The more or less ad hoc analysis of flowsheets has been replaced by systematic numerical solution techniques that are now widely implemented in computer modeling systems and simulation packages for both preliminary and detailed design. The largely arbitrary selection of parameters in process flowsheets has been replaced by the use of modern optimization strategies. The intuitive development of structures of process flowsheets has been largely replaced by systematic synthesis methods, both in the form of conceptual insights and in the form of advanced discrete optimization techniques. It is from the perspective of the above advances in process design that this textbook has been written: to teach modern and systematic approaches to design. The emphasis is on the application of strategies for preliminary design, on the systematic development of representations for process synthesis, and on the development of mathematical models for simulation and optimization for their use in computer-based solution techniques. The main aim in learning these techniques is to be able to synthesize and design process flowsheets, understanding the decisions involved in the reaction, separation, and heat integration subsystems, as well as their interactions and economic implications. The applications deal mostly with large- scale continuous processes, although some introduction to multiproduct batch processes is given. Also, while economics is used as the main measure for evaluation, a brief exposure to operability and discussion on multiple criteria (safety, environmental impact) is covered.

The book consists of 22 chapters, organized into four major parts: I: Preliminary Analysis and Evaluation of Processes, II: Analysis with Rigorous Process Models, III: Basic Concepts in Process Synthesis, IV: Optimization Approaches to Process Synthesis and Design. An introductory chapter is also presented to give a broader view of process design. The textbook is aimed at senior undergraduate and graduate students in chemical engineering. At the undergraduate level it is intended to be a textbook for the senior design course. Chapters 1 to 11 (except 9) could be typically covered in such a course. Chapters 9 and 15 to 17 of Part IV can be used as part of an undergraduate optimization course. At the graduate level, Chapters 9 to 22 and Appendix A can be used as a basis for an advanced process systems engineering course. Chapters 10 to 22 (Parts III and IV) are aimed specifically at a graduate course in process synthesis. Each chapter contains a set of exercises and references to representative publications. Design practitioners who wish to learn about modern design techniques should find this book useful as a reference text.

It is important to note that this book is not meant to be a research monograph. All the material presented here has been developed and taught extensively in courses at Carnegie Mellon University. For instance, a portion of Part I was first developed by Art Westerberg in 1978, and has gradually evolved since then into lecture notes that are currently used in the Senior Undergraduate Design course. Part II was developed first in the early 1980s for a graduate course taught by Art Westerberg on Advanced Process Engineering. Its current form reflects the lecture notes used by Larry Biegler for an advanced undergraduate/graduate level course on computational design methods. Part III corresponds to lecture notes used by Art Westerberg in a current graduate course on Process Systems Engineering. A portion of Part IV was first developed by Ignacio Grossmann in a course on Special Topics on Advanced Process Engineering course in 1985. In its present form it is being used in the graduate course on Process Systems Engineering. Also note that all the chapters include exercises. Some of these require the use of spreadsheets and modeling systems for optimization (see Appendix A).

The authors would like to acknowledge the many individuals that made this book possible. We express our gratitude to Professor John Anderson for having encouraged us to undertake the task of writing this textbook. Larry Biegler is grateful to the Department of Chemical Engineering for releasing him of teaching duties for one semester to write this book. Ignacio Grossmann is grateful to the School of Chemical Engineering at Cornell University and to the Centre for Process Systems Engineering at Imperial College for having provided time and financial support for his sabbatical leaves in 1986Ð1987, and 1993Ð1994, respectively, in which most of the chapters on Part IV were written. Art Westerberg is grateful to the University of Edinburgh for the time and support he received to prepare portions of this book. The three authors are indebted to the following individuals who have provided us extensive feedback on the book: Dr. Alberto Bandoni, Dr. Mark Daichendt, Professor Truls Gundersen, Dr. Zdravko Kravanja, Dr. Antonis Kokossis, Dr. Guillermo Rotstein, and Professor Ross Swaney. We are also grateful to all our current graduate students at Carnegie Mellon who helped us in the proofreading of the manuscript. Finally, we are most grateful to Dolores Dlugokecki and Laura Shaheen for their help and patience in typing and correcting many of the versions of our manuscript.

Lorenz T. Biegler Ignacio E. Grossmann Arthur W. Westerberg Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)