Syzygies and Homotopy Theory

Overview

The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researched and familiar. In the general case, however, homotopy theory over nontrivial fundamental groups is much more problematic and far less well understood.

Syzygies and Homotopy Theory explores the problem of nonsimply connected homotopy in the first nontrivial cases and presents, for the first time, a systematic rehabilitation of ...

See more details below
Hardcover (2012)
$95.16
BN.com price
(Save 12%)$109.00 List Price
Other sellers (Hardcover)
  • All (4) from $79.70   
  • New (3) from $79.70   
  • Used (1) from $135.08   
Sending request ...

Overview

The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researched and familiar. In the general case, however, homotopy theory over nontrivial fundamental groups is much more problematic and far less well understood.

Syzygies and Homotopy Theory explores the problem of nonsimply connected homotopy in the first nontrivial cases and presents, for the first time, a systematic rehabilitation of Hilbert's method of syzygies in the context of non-simply connected homotopy theory. The first part of the book is theoretical, formulated to allow a general finitely presented group as a fundamental group. The innovation here is to regard syzygies as stable modules rather than minimal modules. Inevitably this forces a reconsideration of the problems of noncancellation; these are confronted in the second, practical, part of the book. In particular, the second part of the book considers how the theory works out in detail for the specific examples Fn ´F where Fn is a free group of rank n and F is finite. Another innovation is to parametrize the first syzygy in terms of the more familiar class of stably free modules. Furthermore, detailed description of these stably free modules is effected by a suitable modification of the method of Milnor squares.

The theory developed within this book has potential applications in various branches of algebra, including homological algebra, ring theory and K-theory. Syzygies and Homotopy Theory will be of interest to researchers and also to graduate students with a background in algebra and algebraic topology.

Read More Show Less

Editorial Reviews

From the Publisher
From the reviews:

“The book Syzygies and Homotopy Theory is concerned with the algebraic classification of certain finite dimensional geometric complexes with a nontrivial, finitely presented fundamental group G and is directed towards to basic problems … . Syzygies and Homotopy Theory is well written, nicely organized, and is a pleasure to read. One particularly attractive feature of the book is its attention to detail, and the background chapters may well appeal to an audience wider than that of specialists.” (Marek Golasiński, Zentralblatt MATH, Vol. 1233, 2012)

Read More Show Less

Product Details

  • ISBN-13: 9781447122937
  • Publisher: Springer London
  • Publication date: 12/23/2011
  • Series: Algebra and Applications Series , #17
  • Edition description: 2012
  • Edition number: 1
  • Pages: 296
  • Product dimensions: 6.14 (w) x 9.21 (h) x 0.75 (d)

Table of Contents

Preliminaries.- The restricted linear group.- The calculus of corners and squares.- Extensions of modules.- The derived module category.- Finiteness conditions.- The Swan mapping.- Classification of algebraic complexes.- Rings with stably free cancellation.- Group rings of cyclic groups.- Group rings of dihedral groups.- Group rings of quaternionic groups.- Parametrizing W1 (Z) : generic case.- Parametrizing W1 (Z) : singular case.- Generalized Swan modules.- Parametrizing W1 (Z) : G = C¥ ´ F.- Conclusion​.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)