Tame Geometry with Application in Smooth Analysis
The Morse-Sard theorem is a rather subtle result and the interplay between the high-order analytic structure of the mappings involved and their geometry rarely becomes apparent. The main reason is that the classical Morse-Sard theorem is basically qualitative. This volume gives a proof and also an "explanation" of the quantitative Morse-Sard theorem and related results, beginning with the study of polynomial (or tame) mappings. The quantitative questions, answered by a combination of the methods of real semialgebraic and tame geometry and integral geometry, turn out to be nontrivial and highly productive. The important advantage of this approach is that it allows the separation of the role of high differentiability and that of algebraic geometry in a smooth setting: all the geometrically relevant phenomena appear already for polynomial mappings. The geometric properties obtained are "stable with respect to approximation", and can be imposed on smooth functions via polynomial approximation.

1101518191
Tame Geometry with Application in Smooth Analysis
The Morse-Sard theorem is a rather subtle result and the interplay between the high-order analytic structure of the mappings involved and their geometry rarely becomes apparent. The main reason is that the classical Morse-Sard theorem is basically qualitative. This volume gives a proof and also an "explanation" of the quantitative Morse-Sard theorem and related results, beginning with the study of polynomial (or tame) mappings. The quantitative questions, answered by a combination of the methods of real semialgebraic and tame geometry and integral geometry, turn out to be nontrivial and highly productive. The important advantage of this approach is that it allows the separation of the role of high differentiability and that of algebraic geometry in a smooth setting: all the geometrically relevant phenomena appear already for polynomial mappings. The geometric properties obtained are "stable with respect to approximation", and can be imposed on smooth functions via polynomial approximation.

49.99 In Stock
Tame Geometry with Application in Smooth Analysis

Tame Geometry with Application in Smooth Analysis

Tame Geometry with Application in Smooth Analysis

Tame Geometry with Application in Smooth Analysis

Paperback(2004)

$49.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The Morse-Sard theorem is a rather subtle result and the interplay between the high-order analytic structure of the mappings involved and their geometry rarely becomes apparent. The main reason is that the classical Morse-Sard theorem is basically qualitative. This volume gives a proof and also an "explanation" of the quantitative Morse-Sard theorem and related results, beginning with the study of polynomial (or tame) mappings. The quantitative questions, answered by a combination of the methods of real semialgebraic and tame geometry and integral geometry, turn out to be nontrivial and highly productive. The important advantage of this approach is that it allows the separation of the role of high differentiability and that of algebraic geometry in a smooth setting: all the geometrically relevant phenomena appear already for polynomial mappings. The geometric properties obtained are "stable with respect to approximation", and can be imposed on smooth functions via polynomial approximation.


Product Details

ISBN-13: 9783540206125
Publisher: Springer Berlin Heidelberg
Publication date: 03/05/2004
Series: Lecture Notes in Mathematics , #1834
Edition description: 2004
Pages: 190
Product dimensions: 6.10(w) x 9.25(h) x 0.36(d)

Table of Contents

Preface.- Introduction and Content.- Entropy.- Multidimensional Variations.- Semialgebraic and Tame Sets.- Some Exterior Algebra.- Behavior of Variations under Polynomial Mappings.- Quantitative Transversality and Cuspidal Values for Polynomial Mappings.- Mappings of Finite Smoothness.- Some Applications and Related Topics.- Glossary.- References.
From the B&N Reads Blog

Customer Reviews