When and why would you feed training data as using NumPy or a streaming dataset? How would you set up cross-validations in the training process? How do you leverage a pretrained model using transfer learning? How do you perform hyperparameter tuning? Pick up this pocket reference and reduce the time you spend searching through options for your TensorFlow use cases.
- Understand best practices in TensorFlow model patterns and ML workflows
- Use code snippets as templates in building TensorFlow models and workflows
- Save development time by integrating prebuilt models in TensorFlow Hub
- Make informed design choices about data ingestion, training paradigms, model saving, and inferencing
- Address common scenarios such as model design style, data ingestion workflow, model training, and tuning
When and why would you feed training data as using NumPy or a streaming dataset? How would you set up cross-validations in the training process? How do you leverage a pretrained model using transfer learning? How do you perform hyperparameter tuning? Pick up this pocket reference and reduce the time you spend searching through options for your TensorFlow use cases.
- Understand best practices in TensorFlow model patterns and ML workflows
- Use code snippets as templates in building TensorFlow models and workflows
- Save development time by integrating prebuilt models in TensorFlow Hub
- Make informed design choices about data ingestion, training paradigms, model saving, and inferencing
- Address common scenarios such as model design style, data ingestion workflow, model training, and tuning

TensorFlow 2 Pocket Reference: Building and Deploying Machine Learning Models
253
TensorFlow 2 Pocket Reference: Building and Deploying Machine Learning Models
253Product Details
ISBN-13: | 9781492089186 |
---|---|
Publisher: | O'Reilly Media, Incorporated |
Publication date: | 08/24/2021 |
Pages: | 253 |
Product dimensions: | 4.25(w) x 7.00(h) x 0.54(d) |