The Ambient Metric
This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincaré metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics.


The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincaré metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincaré metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.

1100870550
The Ambient Metric
This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincaré metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics.


The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincaré metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincaré metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.

81.0 In Stock
The Ambient Metric

The Ambient Metric

The Ambient Metric

The Ambient Metric

Paperback

$81.00 
  • SHIP THIS ITEM
    In stock. Ships in 3-7 days. Typically arrives in 3 weeks.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincaré metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics.


The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincaré metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincaré metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.


Product Details

ISBN-13: 9780691153148
Publisher: Princeton University Press
Publication date: 12/04/2011
Series: Annals of Mathematics Studies , #178
Pages: 128
Product dimensions: 5.90(w) x 9.10(h) x 0.40(d)

About the Author

Charles Fefferman is the Herbert E. Jones, Jr., '43 University Professor of Mathematics at Princeton University. C. Robin Graham is professor of mathematics at the University of Washington.

Table of Contents

Chapter 1. Introduction 1

Chapter 2. Ambient Metrics 9

Chapter 3. Formal Theory 17

Chapter 4. Poincaré Metrics 42

Chapter 5. Self-dual Poincaré Metrics 50

Chapter 6. Conformal Curvature Tensors 56

Chapter 7. Conformally Flat and Conformally Einstein Spaces 67

Chapter 8. Jet Isomorphism 82

Chapter 9. Scalar Invariants 97

Bibliography 107

Index 113

From the B&N Reads Blog

Customer Reviews