The Atlas of Food: With a New Introduction

The Atlas of Food: With a New Introduction

by Erik Millstone
     
 

View All Available Formats & Editions

What we eat, where we eat, and how we eat: these questions are explored in this remarkable book, now with a new introduction contextualizing the atlas for 2013 and beyond.

By providing an up-to-date and visually appealing understanding of important issues around global food and agriculture, The Atlas of Food maps out broad areas of

Overview

What we eat, where we eat, and how we eat: these questions are explored in this remarkable book, now with a new introduction contextualizing the atlas for 2013 and beyond.

By providing an up-to-date and visually appealing understanding of important issues around global food and agriculture, The Atlas of Food maps out broad areas of investigation—contamination of food and water, overnutrition, micronutrient deficiency, processing, farming, and trade—to offer a concise overview of today's food and farming concerns. Buttressed by engaging prose and vivid graphics, Erik Millstone and Tim Lang convincingly argue that human progress depends on resolving global inequality and creating a more sustainable food production system.

Editorial Reviews

Toronto Globe & Mail
“This accessible, award-winning, and beautifully and extensively illustrated little book contains anything you might know about world food production.”

Product Details

ISBN-13:
9780520276420
Publisher:
University of California Press
Publication date:
03/01/2013
Edition description:
Updated
Pages:
128
Sales rank:
1,180,352
Product dimensions:
7.40(w) x 9.60(h) x 0.50(d)

Related Subjects

Read an Excerpt

The Atlas of Food

Who Eats What, Where, and Why


By Erik Millstone, Tim Lang, Jannet King, Candida Lacey

UNIVERSITY OF CALIFORNIA PRESS

Copyright © 2013 Myriad Editions Limited
All rights reserved.
ISBN: 978-0-520-96681-9



CHAPTER 1

Current Concerns


FOOD PRICES AROUND THE WORLD – both local and imported products – rose by nearly 40 percent in 2007, caused by a combination of factors that include the financial markets, environmental conditions, and policy decisions.

Booming Asian economies are leading to a heightened demand for all kinds of food, but in particular for meat and dairy products, which rely on an increased supply of grain for animal feed. Cereal stocks in 2007/08, especially those of wheat, are predicted to be at their lowest since the early 1980s.

Extreme weather conditions, including both droughts and floods, have affected both local food supplies and prices, and the global grain trade.

High oil prices mean higher transport costs, which clearly impacts on global trade, but also on local retail prices.

The increased demand for biofuels – in part a response to the need to combat climate change – is also a contributing factor, since it reduces the amount of grain available for food. Campaigners in Africa are highlighting a worrying trend towards the purchase of large areas of land by commercial companies intent on growing crops for fuel.

While higher food prices may have little impact on some sectors of society, for people who may need to spend as much as 70 percent of their income on food, they bring real hardship, and even starvation. Protests against the high cost of staple foods took place around the globe in 2007, and in some countries government action was taken to freeze prices.

Early in 2008, the World Food Programme warned that the sharp increase in the price of cereals was affecting its capacity to provide food aid for some of the world's most vulnerable people.

CHAPTER 2

Feeding the World


MORE THAN ENOUGH FOOD is produced to feed everyone in the world, and yet more than 850 million people do not get enough food to lead active and healthy lives. ,, They are consuming too little protein and energy to sustain a healthy weight, and suffer from deficiencies in the composition of their diet that leave them vulnerable to disease. In 2005, the UN FAO estimated that the world's total production of cereals was about 2.2 billion tonnes. Divided equally between the 6.5 billion people in the world, that would give each person approximately 340 kilograms of cereal a year – sufficient to provide at least 2,000 calories of energy a day for everyone.

Most undernourished people live in countries where food is in chronically short supply because of war, natural disasters, poor food distribution, low productivity, or a number of these factors combined. What they all have in common is that they are poor. In wealthy countries, by contrast, the amount of food available is sufficient for people to be able to consume significantly more than the 2,500 calories recommended by nutritionists, even though the food they eat may result in the other extreme of poor nutrition – obesity.

Country averages hide wide disparities. In the fast-growing economies of Brazil, China, and India, the more prosperous citizens are switching to western-style diets, high in animal fats and sugars, while their poorest compatriots spend an ever-higher proportion of their household income on food, and still suffer from undernutrition.

The World Food Programme and other agencies aim to supply the most vulnerable people with basic foodstuffs, responding both to long-term needs and to emergency situations as they arise.

CHAPTER 3

Unequal Distribution


CHRONIC UNDER-NUTRITION is not a consequence of overall scarcity, but of unequal access to land, technology, education and employment opportunities, coupled with a whole range of socio-economic and environmental factors. The world's population is unevenly distributed, as is the quantity of food produced, and there is a mismatch between the largest populations and the most productive agricultural land and farming methods.

Although the overall production of cereals has grown roughly in line with population increase, the regions where the largest strides have been made in terms of agricultural production are not those that have experienced the greatest increases in population. Productivity has improved substantially in South America and Asia in the last half century, but in Sub-Saharan Africa, where the need is greatest, the increase was not as marked, and in some parts productivity has declined. Climate change is likely to affect agriculture in many and complex ways, but current predictions show reduced outputs in South Asia and Sub-Saharan Africa.

Food is redistributed around the globe both as trade and aid – and a mixture of both – but the redistribution is neither sufficient to solve the problem of under-nutrition nor desirable as a long-term solution. Improvements are needed in agricultural practices and in social structures so that more food can be produced and consumed where it is most needed. While technological change can raise agricultural productivity, if the technologies are too expensive for poor farmers they will make the well-off richer and the poor even poorer. Technological change without social change can therefore aggravate inequalities.

Predictions for further population growth vary, but even if the rate of increase continues to slow, as it has done since 1970, the number of people in the world is still likely to exceed 9 billion by 2050, with more than 60 percent of people living in cities.

CHAPTER 4

Environmental Challenges


AGRICULTURAL PRODUCTIVITY has increased over the past 50 years, but the adverse environmental impacts of those changes have often not been included in commercial prices and so have been mostly tolerated or ignored. It is now clear that the pollution, soil degradation, and loss of habitat and biodiversity caused by current methods of food production and transport are going to make it difficult for current levels of productivity to be maintained or improved on in the future. In an attempt to reduce carbon-dioxide emissions, crops are being grown for biofuels, to substitute for fossil fuels. This is proving ecologically counter-productive, however, and is diminishing the amount of food produced worldwide.

Soil degradation caused by wind or water erosion, nutrient depletion, chemical pollution or salinization is a problem in all regions of the world, with an assessment in 1990 concluding that a quarter of the soil used for growing crops or grazing livestock showed signs of degradation. Ongoing research using satellite imagery to assess changes in productivity indicates that productivity declined on 12 percent of all land between 1981 and 2003. The study of soils and their degradation is increasingly being recognized as a key issue in the context of food production, and of climate change, with an evaluation of the work of the Food and Agriculture Organization concluding, in 2007, that conservation of lands and soils should be given greater priority.

There is considerable scope for reducing waste, pollution and soil degradation, as well as the use of energy and water in the food chain. Social and technological changes could enable many of those problems to be addressed, with some forms of land degradation reversed, and the rate of progression of others slowed. International co-operation is essential, however, to reduce greenhouse gas emissions, make food production systems more ecologically and economically sustainable, and to extend educational and economic opportunities to poor people in developing countries, to allow them to adapt and to develop sustainably.

Predicting the impact of climate change on food production is difficult because so many factors are involved. It is reasonable to assume that a rise in sea-level, already occurring as a result of thermal expansion, will affect low-lying cropland in countries such as Bangladesh, either by inundating it, or by leading to the intrusion of saltwater into underground aquifers, making the land too saline for agriculture, and reducing the availability of fresh water for irrigation or drinking.

Weather patterns are becoming increasingly unpredictable. Intense tropical storms at unseasonable times damage crops and increase food insecurity, as do prolonged droughts.

Agriculture is adaptable, however. Crops can be planted and harvested at different times, and new varieties developed that are more tolerant of stress than those now in use. In Asia, where there is little room for expansion of the agricultural area, global warming may actually enable farmers to move higher up mountain slopes and to more northerly latitudes.

But even if, with a changing climate, the total quantity of food produced remained stable by increasing production in some regions, it is probable that productivity in other regions, including South Asia, and Sub-Saharan Africa, will decline, making hundreds of millions of people increasingly dependent on imported food, with serious political, economic and social consequences.

CHAPTER 5

Water Pressure


MANY COUNTRIES already have insufficient fresh water. An increase in population will see many more experiencing water scarcity or water stress by 2050, while climate change will also undoubtedly have an impact on water supplies.

A country's average water supply obscures much regional variation. California's burgeoning urban population is putting an increasing strain on the state's limited resources, and in China the wheat-growing north is more water-stressed than its largely rice-growing south. Some countries, such as Egypt, are heavily dependent on water flowing in from another country, increasing their vulnerability.

Irrigated crops are crucial to food security, and since 1950 the area under irrigation has doubled. Some methods are very wasteful of water, however, and badly drained irrigation can also lead to increased salinity. But support for farmers to enable them to develop small-scale, low-tech irrigation systems is vital to improving food security in poorer regions.

Some countries are able to compensate for a scarcity of water by importing food. In China, much river water in the north is diverted from the fields to more profitable industrial uses, generating currency to pay for imported wheat to offset any shortfall. However, this makes China dependent on the global wheat market, and increases its food insecurity. Many less industrialized countries, especially those in Africa, are much more vulnerable to water stress: when they experience drought they are too poor to buy food elsewhere.

Although the effects of climate change on water supplies are difficult to predict with precision, it is possible that the Middle East, Central Asia and southern Europe, already experiencing water stress, will see decreased river flows by the end of this century. Elsewhere, increased temperatures may initially increase glacial melt water flows from mountain ranges, but ultimately the flow may dry up, leading to devastating water shortages in areas such as northeast India, Bangladesh, and China – some of the most intensively farmed areas of the world.

CHAPTER 6

Nutritional Deficiencies


UNDER-NUTRITION is a major public health problem. It comes in many different forms, and can be caused by an inadequate amount of food, but also by a deficiency of certain nutrients in the diet. Different types of under-nutrition often occur in the same region, and they are almost always associated with poverty.

The overall incidence of all kinds of under-nutrition is much higher in developing than in industrialized countries. The type of under-nutrition caused by a shortage of food is called protein-energy malnutrition, and is often associated with infectious diseases, such as measles and diarrhoea. This combination is a major cause of premature death, especially among children in South Asia and Africa.

Other kinds of under-nutrition, such as iodine deficiency, are caused by a shortage of specific vitamins and minerals in the diet. Again, other factors often contribute to causing these deficiencies, such as infections and intestinal parasites that, for instance, reduce our ability to absorb nutrients from food.

Vitamin A deficiency (VAD) is a major public health problem, affecting 140 million to 250 million pre-school children. It is a leading cause of blindness in developing countries and leaves sufferers at increased risk of infections.

Iron deficiency anemia is the most common kind of micro-nutrient deficiency worldwide, and is also prevalent in industrialized countries.

Some vitamin deficiency syndromes, including rickets (vitamin D deficiency), scurvy (vitamin C deficiency), pellagra (niacin deficiency) and beri-beri (thiamine deficiency), have been largely eradicated through extensive public health programmes, although they sometimes occur when people are dependent on a restricted supply of foods, such as may occur in refugee camps. International public health bodies continue in their efforts to eradicate the remaining micronutrient deficiencies by, for instance, mass supplementation of vitamin A and iodine. However, under-nutrition caused by shortage of food continues to be a huge problem.

CHAPTER 7

Over-Nutrition


PEOPLE IN INDUSTRIALIZED countries tend to lead sedentary lifestyles and eat more than they need. But the incidence of obesity is increasing worldwide. When countries industrialize, eating habits change and people tend to supplement their traditional diets, high in fruits, vegetables and cereals, with meat and dairy products.

Obesity can lead to diabetes, and this is rapidly becoming a worldwide epidemic. Diabetes is most common in industrialized countries, but recent reports suggest that it is increasing most rapidly in Asia and the Caribbean.

Both diabetes and obesity increase the risk of coronary heart disease (CHD). Until the 1980s CHD was common in industrialized countries, but improvements in medical treatment have led to falling rates in North America, Western Europe and Australia. In Japan, and in countries where people have maintained their traditional, plant-based diets, rates of CHD are low, while in Russia and Eastern Europe, rates are continuing to rise.

In general, premature deaths from CHD are twice as common in men as in women, but in some regions this difference is narrowing. Indeed, diets worldwide are tending to converge, with the growth of fast-food outlets and global trade, and in many developing countries the incidence of heart disease is increasing as a consequence.

CHAPTER 8

Contamination


AROUND 1.8 MILLION DEATHS a year are caused by diarrhoea, largely contracted from consuming contaminated food or water. Most of the deaths are among children, and almost all are in developing countries, although the problem is increasing in the industrialized world. The globalization of food production and trade, and the popularity of foreign travel, has led to foodborne diseases crossing borders and continents. With more people eating food prepared out of the home, the risk of infection is also increasing.

Over 200 disease agents can be transmitted in food and water. In Europe and the USA, bacteria such as salmonella, associated with industrialized farming, are prevalent. In the tropics, waterborne bacteria and cholera predominate; in coastal areas natural toxins associated with reef fish play an important role. Several new pathogens have recently emerged and others have become resistant to antibiotics.


(Continues...)

Excerpted from The Atlas of Food by Erik Millstone, Tim Lang, Jannet King, Candida Lacey. Copyright © 2013 Myriad Editions Limited. Excerpted by permission of UNIVERSITY OF CALIFORNIA PRESS.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Meet the Author

Erik Millstone is Professor of Science Policy at the University of Sussex, United Kingdom. Tim Lang is Professor of Food Policy at City University, London, Chair of Sustain, and is a consultant to the World Health Organization.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >