The Calculus Problem Solver: A Complete Solution Guide to Any Textbook

Overview


REA’s Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Calculus Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Calculus problems.

The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook ...

See more details below
Paperback (REV)
$16.42
BN.com price
(Save 36%)$25.95 List Price

Pick Up In Store

Reserve and pick up in 60 minutes at your local store

Other sellers (Paperback)
  • All (64) from $1.99   
  • New (6) from $17.39   
  • Used (58) from $1.99   
Sending request ...

Overview


REA’s Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Calculus Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Calculus problems.

The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions.

The Calculus Problem Solver is the perfect resource for any class, any exam, and any problem!

Read More Show Less

Product Details

  • ISBN-13: 9780878915057
  • Publisher: Research & Education Association
  • Publication date: 1/1/2000
  • Series: Problem Solvers Solution Guides
  • Edition description: REV
  • Edition number: 1
  • Pages: 1104
  • Sales rank: 686,545
  • Product dimensions: 6.70 (w) x 9.90 (h) x 1.80 (d)

Read an Excerpt



WHAT THIS BOOK IS FOR

Students have generally found calculus a difficult subject to understand and learn. Despite the publication of hundreds of textbooks in this field, each one intended to provide an improvement over previous textbooks, students of calculus continue to remain perplexed as a result of numerous subject areas that must be remembered and correlated when solving problems. Various interpretations of calculus terms also contribute to the difficulties of mastering the subject.

In a study of calculus, REA found the following basic reasons underlying the inherent difficulties of calculus:

No systematic rules of analysis were ever developed to follow in a step-by-step manner to solve typically encountered problems. This results from numerous different conditions and principles involved in a problem that leads to many possible different solution methods. To prescribe a set of rules for each of the possible variations would involve an enormous number of additional steps, making this task more burdensome than solving the problem directly due to the expectation of much trial and error.

Current textbooks normally explain a given principle in a few pages written by a calculus professional who has insight into the subject matter not shared by others. These explanations are often written in an abstract manner that causes confusion as to the principle's use and application. Explanations then are often not sufficiently detailed or extensive enough to make the reader aware of the wide range of applications and different aspects of the principle being studied. The numerous possible variations of principles and theirapplications are usually not discussed, and it is left to the reader to discover this while doing exercises. Accordingly, the average student is expected to rediscover that which has long been established and practiced, but not always published or adequately explained.

The examples typically following the explanation of a topic are too few in number and too simple to enable the student to obtain a thorough grasp of the involved principles. The explanations do not provide sufficient basis to solve problems that may be assigned for homework or given on examinations.

Poorly solved examples such as these can be presented in abbreviated form which leaves out much explanatory material between steps, and as a result requires the reader to figure out the missing information. This leaves the reader with an impression that the problems and even the subject are hard to learn - completely the opposite of what an example is supposed to do.

Poor examples are often worded in a confusing or obscure way. They might not state the nature of the problem or they present a solution, which appears to have no direct relation to the problem. These problems usually offer an overly general discussion - never revealing how or what is to be solved.

Many examples do not include accompanying diagrams or graphs, denying the reader the exposure necessary for drawing good diagrams and graphs. Such practice only strengthens understanding by simplifying and organizing calculus processes.

Students can learn the subject only by doing the exercises themselves and reviewing them in class, obtaining experience in applying the principles with their different ramifications.

In doing the exercises by themselves, students find that they are required to devote considerable more time to calculus than to other subjects, because they are uncertain with regard to the selection and application of the theorems and principles involved. It is also often necessary for students to discover those "tricks" not revealed in their texts (or review books) that make it possible to solve problems easily. Students must usually resort to methods of trial and error to discover these "tricks," therefore finding out that they may sometimes spend several hours to solve a single problem.

When reviewing the exercises in classrooms, instructors usually request students to take turns in writing solutions on the boards and explaining them to the class. Students often find it difficult to explain in a manner that holds the interest of the class, and enables the remaining students to follow the material written on the boards. The remaining students in the class are thus too occupied with copying the material off the boards to follow the professor's explanations.

This book is intended to aid students in calculus overcome the difficulties described by supplying detailed illustrations of the solution methods that are usually not apparent to students. Solution methods are illustrated by problems that have been selected from those most often assigned for class work and given on examinations. The problems are arranged in order of complexity to enable students to learn and understand a particular topic by reviewing the problems in sequence. The problems are illustrated with detailed, step-by-step explanations, to save the students large amounts of time that is often needed to fill in the gaps that are usually found between steps of illustrations in textbooks or review/outline books.

The staff of REA considers calculus a subject that is best learned by allowing students to view the methods of analysis and solution techniques. This learning approach is similar to that practiced in various scientific laboratories, particularly in the medical fields.

In using this book, students may review and study the illustrated problems at their own pace; students are not limited to the time such problems receive in the classroom.

When students want to look up a particular type of problem and solution, they can readily locate it in the book by referring to the index that has been extensively prepared. It is also possible to locate a particular type of problem by glancing at just the material within the boxed portions. Each problem is numbered and surrounded by a heavy black border for speedy identification.
Read More Show Less

Table of Contents

TABLE OF CONTENTS
Introduction
Chapter 1: Inequalities
Chapter 2: Absolute Values
Chapter 3: Limits
Chapter 4: Continuity
Chapter 5: Derivative ?-Method
Chapter 6: Differentiation of Algebraic Functions
Chapter 7: Differentiation of Trigonometric Functions
Chapter 8: Differentiation of Inverse Trigonometric Functions
Chapter 9: Differentiation of Exponential and Logarithmic Functions
Chapter 10: Differentiation of Hyperbolic Functions
Chapter 11: Implicit Differentiation
Chapter 12: Parametric Equations
Chapter 13: Indeterminate Forms
Chapter 14: Tangents and Normals
Chapter 15: Maximum and Minimum Values
Chapter 16: Applied Problems in Maxima and Minima
Chapter 17: Curve Tracing
Chapter 18: Curvature
Chapter 19: Related Rates
Chapter 20: Differentials
Chapter 21: Partial Derivatives
Chapter 22: Total Differentials, Total Derivatives, and Applied Problems
Chapter 23: Fundamental Integration
Chapter 24: Trigonometric Integrals
Chapter 25: Integration by Partial Fractions
Chapter 26: Trigonometric Substitutions
Chapter 27: Integration by Parts
Chapter 28: Improper Integrals
Chapter 29: Arc Length
Chapter 30: Plane Areas
Chapter 31: Solids: Volumes and Areas
Chapter 32: Centroids
Chapter 33: Moments of Inertia
Chapter 34: Double/Iterated Integrals
Chapter 35: Triple Integrals
Chapter 36: Masses of Variable Density
Chapter 37: Series
Chapter 38: The Law of the Mean
Chapter 39: Motion: Rectilinear and Curvilinear
Chapter 40: Advanced Integration Methods
Chapter 41: Basic Differential Equations
Chapter 42: Advanced Differential Equations
Chapter 43: Applied Problems in Differential Equations
Chapter 44: Fluid Pressures/Forces
Chapter 45: Work/Energy
Chapter 46: Electricity
Index

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)