The Discoveries: The Great Breakthroughs in 20th-Century Science, Including the Original Papers


An unprecedented explosion of creativity, insight, and breakthrough occurred in every field of science in the last century. From the theory of relativity to the first quantum model of the atom to the mapping of the structure of DNA, these discoveries profoundly changed the way we understand the world and our place in it. Now the physicist and novelist Alan Lightman tells the stories of two dozen of the most seminal discoveries.

In lucid and literary prose, Lightman paints the ...

See more details below
Available through our Marketplace sellers.
Other sellers (Hardcover)
  • All (43) from $1.99   
  • New (3) from $19.48   
  • Used (40) from $1.99   
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any coupons and promotions
Seller since 2008

Feedback rating:



New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

2005-11-08 Hardcover New The item is from a closeout sale from bookstore. A great book in new condition! Inquires welcomed and we want your complete satisfaction! Eligible for ... FREE Super Saving Shipping! Fast Amazon shipping plus a hassle free return policy mean your satisfaction is guaranteed! Tracking number provided in your Amazon account with every order. Item is Brand New! Read more Show Less

Ships from: Savannah, GA

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
Seller since 2015

Feedback rating:


Condition: New
New New condition. Collectible-first edition. May have minor shelf wear on DJ. Free track! Fast shipping! Satisfication guaranteed!

Ships from: Media, PA

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
Seller since 2008

Feedback rating:


Condition: New

Ships from: Chicago, IL

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
Page 1 of 1
Showing All
Sort by
Sending request ...


An unprecedented explosion of creativity, insight, and breakthrough occurred in every field of science in the last century. From the theory of relativity to the first quantum model of the atom to the mapping of the structure of DNA, these discoveries profoundly changed the way we understand the world and our place in it. Now the physicist and novelist Alan Lightman tells the stories of two dozen of the most seminal discoveries.

In lucid and literary prose, Lightman paints the intellectual and emotional landscape of each discovery, portrays the personalities and human drama of the scientists involved, and explains the significance and impact of the work. He explores such questions as whether there were common patterns of research, whether the discoveries were accidental or intentional, and whether the scientists were aware of or oblivious to the significance of what they had found. Finally, Lightman gives an unprecedented and exhilarating guided tour through each of the original papers, which are included in the book. Here are Einstein and Bohr, McClintock and Pauling, Planck and Heisenberg, and many others in their own words, grappling with the nature of the world. Original in its scope and depth, The Discoveries offers an extraordinary exploration into the nature of scientific discoveries and the minds of the men and women who made them.

Read More Show Less

Editorial Reviews

From Barnes & Noble
Our minds are still reeling from the scientific discoveries of the 20th century. Even scientists find it impossible to fully assimilate all the extraordinary advances in physics, chemistry, biology, and astronomy. Alan Lightman's The Discoveries renders the stories of 24 scientific breakthroughs within their historical and human context. His accounts possess astonishing immediacy: In his hands, even Edwin Hubble's essay "A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae" becomes a breathtaking event.
Thomas Hayden
In dealing with the development of scientific thought, both Leavitt and Lightman highlight a painful irony -- scientists' tendency to overlook their own literature. From the time he was a student, Turing seems to have squandered a good deal of his time and effort working out solutions to problems that others had already solved. And Lightman points out a half-dozen episodes where the progress of science was slowed because researchers were not aware of each other's work. It's a poignant reminder that even the most brilliant are capable of foolishness and, perhaps, also a gentle jab at his scientific colleagues. There is value after all in looking back even as they push forward.
— The Washington Post
Publishers Weekly
In this enlightening collection, novelist and science writer Lightman (Einstein's Dreams) has assembled the original works announcing 25 of the world's pioneering scientific breakthroughs, coupling them with original essays to create a meditation on the "exhilaration of discovery." The lineup is a who's who of 20th-century science-Einstein, Planck, Fleming-ranging from quantum physics to astronomy, medicine, genetics and chemistry. Lightman is at his best when humanizing the scientists behind the world's major discoveries; he offers a stunning recollection from Caltech in the 1970s, when he was a graduate student, of Richard Feynman virulently attacking a world-weary Werner Heisenberg, author of the uncertainty principle, for a terrible lecture and, implicitly, for having worked on an atom bomb for the Nazis. Unfortunately, the heart of the collection, the landmark papers themselves, will prove to be stultifying and unintelligible for readers not well versed in science. Still, Lightman's elegant accompanying narratives are strong enough to carry the book. In an age when science is expanding at a faster clip than ever before, from supercomputing to cloning, this collection is a well-timed reminder of the humanity that surrounds and indeed drives scientific discovery. B&w photos. Agent, Jane Gelfman. (Nov. 8) Copyright 2005 Reed Business Information.
Library Journal
Physicist and novelist Lightman (Einstein's Dreams) is popular science's It Guy, whose writing bridges the gap between popular science television coverage and hard science literature that border on being inaccessible to lay readers. His latest labor of love chronicles 25 landmark findings in astronomy, physics, chemistry, and biology in the 20th century. Beginning with Max Planck's quantum theory and ending with Paul Berg's recombinant DNA, these breakthroughs are academically and playfully explored via the nature of the unknown, the circumstances and influences of discovery, and, most originally, the actual words of the scientists. Lightman vividly explains inaccessible published scientific masterpieces that document each finding and follow each essay. Simple language, metaphors, and analogies are employed to produce startlingly comprehensible summaries of some of humankind's greatest insights into the nature of our universe. Strongly recommended for academic and adult public library collections. [See Prepub Alert, LJ 7/05.]-James A. Buczynski, Seneca Coll. of Applied Arts & Technology, Toronto Copyright 2005 Reed Business Information.
Read More Show Less

Product Details

  • ISBN-13: 9780375421686
  • Publisher: Knopf Doubleday Publishing Group
  • Publication date: 11/8/2005
  • Pages: 576
  • Product dimensions: 6.51 (w) x 9.60 (h) x 1.45 (d)

Meet the Author

Alan Lightman was born in Memphis, Tennessee, and educated at Princeton and at the California Institute of Technology, where he received a Ph.D. in theoretical physics. An active research scientist in astronomy and physics for two decades, he has also taught both subjects on the faculties of Harvard and MIT. Lightman’s novels include Einstein’s Dreams, which was an international best seller; Good Benito; The Diagnosis, which was a finalist for the National Book Award; and Reunion. His essays have appeared in The New York Review of Books, The New York Times, Nature, The Atlantic Monthly, and The New Yorker, among other publications. He lives in Massachusetts, where he is adjunct professor of humanities at MIT.

Einstein’s Dreams, The Diagnosis, and Reunion are available in paperback from Vintage Books.

Read More Show Less

Read an Excerpt

Chapter 1

The Quantum

In his famous autobiography The Education of Henry Adams, published only a few years into the twentieth century, the historian Henry Adams shouted alarm that the sacred atom had been split. Since the ancient Greeks, the atom had been the smallest particle of matter, the irreducible and indestructible element, the metaphor for unity and permanence in all things. Then, in 1897, the British physicist J. J. Thomson found electrons, particles far lighter and presumably smaller than atoms. The next year, Marie Sklodovska (Madame Curie) and her husband Pierre Curie discovered that the atoms of a new element, called radium, continuously hurled out tiny pieces of themselves, losing weight in the process. Now, nothing was permanent -- nature no more than human civilizations. The solid had become fragile. Unity had given way to complexity. The indivisible had been divided.

As Adams was summing up the nineteenth century, he was evidently unaware of another scientific bombshell that had just exploded, ultimately as earthshaking and profound as the fracturing of the atom. On December 14, 1900, in a lecture to the stodgy German Physical Society in Berlin, Max Planck proposed the astounding idea of the quantum: energy does not exist as a continuous stream, which can be subdivided indefinitely into smaller and smaller amounts. Rather, he suggested, there is a smallest amount of energy that can be divided no further, an elemental drop of energy, called a quantum. Light is an example of energy. The seemingly smooth flood of light pouring through a window is, in reality, a pitter-patter of individual quanta, each far tootiny and weak to discern with the eye. Thus began quantum physics.

At the time of his lecture, Planck was bald from the middle of his head forward, with a sharp aquiline nose, a mustache, a pair of spectacles fastened to his face, and the overall look of a dull office clerk. He was forty-two years old, almost elderly for a theoretical physicist. Newton had been a youth in his early twenties when he worked out his law of gravity. Maxwell had polished off electromagnetic theory and retired to the country by age thirty-five. Einstein and Heisenberg would be in their mid-twenties when they erected their great monuments.

In 1900, Planck was already established as one of the leading theoretical physicists in Europe. Planck himself had helped legitimize the discipline. Fifteen years earlier, when he secured the rare position of professor of theoretical physics at the University of Kiel, theoretical science was considered an impotent profession, inferior to laboratory experiments. Few students clamored to hear Planck's mathematical lectures. Then, in 1888, after his studies of heat -- in which he clarified the Second Law of Thermodynamics and the concept of irreversibility -- Planck was appointed professor at the University of Berlin. At the same time, he was made director of the new Institute for Theoretical Physics, founded mainly for him.

At the end of the nineteenth century, physics basked in the glow of extraordinary achievement. Newton's precise laws of mechanics, which described how particles respond to forces, together with Newton's law for gravity had been successfully applied to a large range of terrestrial and cosmic phenomena, from the bouncing of balls to the orbits of planets. The theory of heat, called thermodynamics, had reached its climax with the melancholy but deep Second Law of Thermodynamics: an isolated system moves inexorably and irreversibly to a state of greater disorder. Or, equivalently, every machine inevitably runs down. All electrical and magnetic phenomena had been unified by a single set of equations, called Maxwell's equations after the Scottish physicist James Clerk Maxwell, who completed them. Among other things, these laws demonstrated that light, that most primary of natural phenomena, is an oscillating wave of electromagnetic energy, traveling through space at a speed of 186,282 miles per second. The new areas of physics known as statistical physics and kinetic theory had shown that the behavior of gases and fluids could be understood on the basis of collisions between large numbers of tiny objects, assumed to be the long-hypothesized but invisible atoms and molecules. In short, as Planck scribbled his equations at the dawn of the new century, physics might survey its vast kingdom and be pleased.

Some cracks, however, were starting to show in the marble facade. Aside from the philosophical dismay expressed by Mr. Adams, Thomson's electron was clearly a new type of matter that demanded explanation and raised other questions about the innards of atoms. The "radioactive" disintegrations observed by the Curies involved the unleashing of huge quantities of energy. What was the nature of this energy and where did it come from? Other emissions of electromagnetic radiation from atoms, the so-called atomic spectra, exhibited surprising patterns and regularities but with no theoretical understanding. Equally perplexing were the repeating patterns in the properties of the chemical elements, a phenomenon that scientists suspected was caused by the structure of atoms.

Finally, physicists had observed that a unique kind of light, called black-body light or black-body radiation, emerged from all hot, blackened boxes held at constant temperature. (Set a kitchen oven at some temperature, leave the oven door closed for a long time, and black-body radiation will develop inside -- although at any practical cooking temperature this light will be below the frequencies visible to the human eye.) It was already well known to scientists that all hot objects emit light -- that is, electromagnetic radiation. In general, the nature of such light varies with the properties of the hot object. But if the radiating object is additionally enclosed within a box and held at constant temperature, its light assumes a special and unvarying form, the so-called black-body radiation.

A particularly mysterious aspect of black-body light was that its intensity and colors were completely independent of the size, shape, or composition of the container -- as surprising as if human beings all over the world, upon being asked a question, uttered the same sentence in reply. A heated black box made of charcoal and shaped like a cigar produces precisely the same light as a black box made of dark tin and shaped like a beach ball, provided that the two boxes have the same temperature. The known laws of physics could not explain black-body light. Even worse, the standard working theories of light and of heat actually predicted that a blackened box held at constant temperature should create an infinite amount of luminous energy! It was the puzzle of black-body radiation that Max Karl Ernst Ludwig Planck had solved for his lecture of December 14, 1900.

A great deal was already known of the subject. With the use of colored filters and other devices, scientists had measured how much energy there was in each frequency range of black-body light. A colored filter allows light of only a narrow range of frequencies to pass through it. (The frequency of light is the number of oscillations per second. Each frequency of light corresponds to a particular color, just as each frequency of sound corresponds to a particular tone.) The amount of energy in a given frequency range of light is measured by a device called a photometer. Photometers gauge the intensity of light falling on a surface -- a glass plate, for example -- by comparing that light to another beam of light of known intensity. The comparison can be accomplished, for example, by the relative penetrating power of light through a liquid. More intense light beams have greater penetrating power. (Several decades into the twentieth century, light intensities could be measured more accurately by their electrical effects, with photoelectric detectors.)

The breakdown of a light source into the amount of energy in each range of frequency is called a light spectrum. When the light is black-body light, its spectrum is called a black-body spectrum. Figure 1.1 illustrates two black-body spectra, one for a temperature of 50 K and another for a temperature of 65 K. Here the K stands for Kelvin, the unit of temperature on the absolute temperature scale, which is a form of the Celsius scale with the zero point shifted. The coldest possible temperature lies at 0 K and -273 C.

A more familiar example of a spectrum is the graph that shows how many adults there are in each range of heights. Such a spectrum is usually a bell-shaped curve, with few people at very small heights and few people at very tall heights. As one would expect, the height spectrum varies from one country to the next, since human heights are determined by a large number of variables such as genetics and diet. So, it was remarkable when Planck's predecessor to the Berlin chair, Gustav Kirchhoff, and others, discovered that the black-body spectrum does not vary at all with the details of the container. The black-body spectrum depends only on a single parameter, the temperature.

Planck was much impressed by the uniqueness and universality of the black-body spectrum, reasoning that such a universality must be the result of some fundamental new law of nature. A few weeks prior to his December lecture, the German physicist had in fact guessed a formula for the spectrum of black-body light. Planck's formula was a mathematical expression for the amount of energy in each range of frequency of black-body light, and it agreed with all experimental measurements. Embracing the aesthetic criteria common to most physicists, Planck found pleasure in the simplicity of his formula, using the word "simple" (einfach in German) twice in the first paragraph of his paper.

But a mathematical formula, in itself, is only a tidy summary of quantitative results, like a sun calendar, which tells the number of daylight hours on each day of the year. Such a calendar is useful for making plans, but it does not explain why the numbers come out as they do. To know why, we need to know what causes day and night, we need to know that the earth spins on its axis at a certain rate, that the earth also orbits the sun at a certain rate, that the earth's axis is tilted at a particular angle. When we know all of these things, we understand why. With such understanding, we could then predict the sun calendar for any planet anywhere in the universe, given the corresponding astronomical facts.

Planck was not satisfied with merely guessing the right formula for black-body light. What compelled him and haunted him was to answer the deeper question: Why? What fundamental, inviolable principles led to that formula, made it a logical necessity, required it and it alone out of all the possible einfachen formulas that one could imagine? Why was that same formula observed to be true over and over again, from one experiment to the next, even for experiments that had never been done?

To understand the why of his formula, Planck discovered that he had to reject centuries of physical thought that you could chop energy into smaller and smaller pieces indefinitely. Surprisingly, the world did not work in that way. Planck could explain his formula for black-body light only by the radical proposal that there was a smallest piece of energy, called the quantum, which could not be chopped any further. Evidently, energy, like matter, came in granular form. The quantum was the grain of sand on the beach, the penny of currency in the subatomic world. The quantum was indivisible.

Planck was a theoretician, someone who works with pencil and paper and imagines experiments in his mind. To arrive at his conclusions, the German physicist imagined lots of atoms enclosed in a black box, all emitting and absorbing light. In such a situation, the atoms are affected by the surrounding light, and the surrounding light is affected by the atoms. Planck then discovered that if the atoms could absorb or emit energy only in whole chunks, quanta, then the resulting light would necessarily become black-body light.

For much of his life thereafter, Planck was amazed by the success of his quantum proposal. Like other theoretical physicists, he had an almost religious faith in the absolute validity of the laws of nature, which would, as he wrote in 1899, "retain their significance for all times and for all cultures including extraterrestrial and nonhuman ones." For Planck, "the search for the absolute" was "the loftiest goal of all scientific activity."

Yet in spite of Planck's lofty views, he himself did not aspire to make great discoveries. As he told Philipp von Jolly, his professor at the University of Munich, he desired only to understand and perhaps deepen the existing foundations of physics. (In 1878, Jolly actually advised the twenty-year-old Planck not to continue with physics, on the grounds that all the fundamental laws had been discovered.) Planck's cautious manner of "understanding" was to study a subject slowly and carefully, until he had mastered it. Such a conservative and modest approach seemed to grow naturally out of his background as the descendant of a long line of pastors, scholars, and jurists -- Planck's father, Wilhelm, was a professor of jurisprudence at Kiel and then Munich -- and further to resonate with his loyal support of imperial Germany. Planck's natural restraint carried over to his personal relationships. Marga von Hoesslin Planck, his second wife, wrote to another physicist that her husband was quite proper and reserved with anyone other than his family and could enjoy himself only with people of his own rank, with whom he might take a glass of wine and a cigar and even make a quiet joke.

There were two situations in which Planck abandoned his reserve: with his family and in music. As a young man he wrote to a friend, "How wonderful it is to set everything else aside and live entirely within the family." Many years later, Marga confirmed this feeling in a letter to Einstein upon the death of her husband: "He only showed himself fully in all his human qualities in the family." Planck's other liberation was music. While a student at the University of Munich, he composed songs and a whole operetta; he served as second choirmaster in a school singing group; he played the organ at services in the student's church; and he conducted. For the rest of his life, he played the piano superbly at small musical gatherings in his home. Music, according to Planck's nephew-in-law Hans Hartmann, was the "only domain in life in which [Planck] gave his spirit free rein."

Following Planck's line of argument will help us understand how theoretical scientists think, how they use models, imagination, and logical consistency through mathematics. As it turns out, Planck's paper on the quantum is one of the most conceptually difficult and abstract of any in this book, and the reader will need to exercise some patience and good humor. Planck begins his landmark paper by considering the material atoms that make up the inner walls of the blackened box. After all, these atoms are responsible for creating the observed black-body light, by emitting and absorbing electromagnetic radiation. He idealizes each of these atoms as a "monochromatic vibrating resonator," that is, a system that emits and absorbs light at only a single frequency, say pure red or pure green. A concrete example of one of Planck's monochromatic vibrating resonators would be an electron bouncing up and down, or "vibrating," on a spring. As the electron bounces, it emits light of a particular frequency, the precise number of up-and-down bounces each second. Different frequencies correspond to different rates of bouncing, which in turn are determined by different stiffnesses of the springs. Black-body light is then hypothetically produced by a large number of these bouncing electrons at many different frequencies. All of these ideas are in accord with Maxwell's equations of electromagnetism.

Read More Show Less

Table of Contents

Introduction A Note on Numbers

—“On the Theory of the Energy Distribution Law of the Normal Spectrum,” by Max Planck (1900)

—“The Mechanism of Pancreatic Secretion,” by William Bayliss and Ernest Starling (1902)

—“On a Heuristic Point of View Concerning the Production and Transformation of Light,” by Albert Einstein (1905)

—“On the Electrodynamics of Moving Bodies,” by Albert Einstein (1905)

—“The Scattering of alpha and beta Particles by Matter and the Structure of the Atom,” by Ernest Rutherford (1911)

—“Periods of 25 Variable Stars in the Small Magellanic Cloud,” by Henrietta Leavitt (1912)

—“Interference Phenomena with Röntgen Rays,” by W. Friedrich, P. Knipping, and M. von Laue (1912)

—“On the Constitution of Atoms and Molecules,” by Niels Bohr (1913)

—“On the Humoral Transmission of the Action of the Cardiac Nerve,” by Otto Loewi (1921)

—“On the Physical Content of Quantum Kinematics and Mechanics,” Werner Heisenberg (1927)

—“The Shared-Electron Chemical Bond,” by Linus Pauling (1928)

—“A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae,” by Edwin Hubble (1929)

—“On the Antibacterial Action of Cultures of Penicillium, with Special Reference to Their Use in the Isolation of B. Influenzae,” by Alexander Fleming (1929)

—“The Role of Citric Acid in Intermediate Metabolism in Animal Tissues,” by Hans Krebs and W. A. Johnson (1937)

—“Concerning the Existence of Alkaline Earth Metals Resulting from Neutron Irradiation of Uranium,” by Otto Hahn and Fritz Strassmann (1939) and
—“Disintegration of Uranium by Neutrons: A New Type of Nuclear Reaction,” by Lise Meitner and Otto Frisch (1939)

—“Mutable Loci in Maize,” Barbara McClintock (1948)

—“Molecular Structure of Nucleic Acids,” by James D. Watson and Francis H. C. Crick (1953) and
—“Molecular Configuration in Sodium Thymonucleate,” by Rosalind E. Franklin and R. G. Gosling (1953)

—“Structure of Hæmoglobin,” by Max F. Perutz, M. G. Rossmann, Ann F. Cullis, Hilary Muirhead, Georg Will, and A. C. T. North (1960)

—“A Measurement of Excess Antenna Temperature at 4080 Mc/s,” by Arno A. Penzias and Robert W. Wilson and
—“Cosmic Black-Body Radiation,” by Robert H. Dicke, P. James E. Peebles, Peter G. Roll, and David T. Wilkinson (1965)

—“A Model of Leptons,”" by Steven Weinberg (1967)

—“Observed Behavior of Highly Inelastic Electron-Proton Scattering,” by M. Breidenbach, J. I. Friedman, H. W. Kendall, E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, L. W. Mo, and R. E. Taylor (1969)

—“Biochemical Method of Inserting New Genetic Information into DNA of Simian Virus 40,” by David A. Jackson, Robert H. Symons, and Paul Berg (1972)


Notes Abridgments of Papers Acknowledgments Permission Acknowledgments Index

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing all of 2 Customer Reviews
  • Anonymous

    Posted April 11, 2009

    A fascinating and deep look into physics and biology of the 20th century

    This is a remarkable book that takes a lucid and detailed romp through the most important discoveries in physics and biology in the 20th century. The topics include atomic and nuclear structure, quantum mechanics, relativity, the structure of the universe, hormones, nerve signaling, DNA structure, protein structure, gene-splicing and more. Each discovery (mostly Nobel prize winning discoveries) is preceded by an essay that is highly entertaining and enlightening, focusing on the personal characteristics of the brilliant scientists who made the discoveries and on the background to the discoveries. I am a trained physicist and also a practicing cell biologist so the discoveries were familiar to me. Even so, I had not read the original papers so it was a true pleasure to have them all together in this book. For the more general reader who may be aware of the general ideas presented here, Lightman does an excellent job of leading the reader through the papers. Many of the papers are quite readable while others are mathematically advanced or use a lot of biology jargon. Even so, it is easy to get the essential points of the papers and it is fascinating to read them. These discoveries have changed our world and this book will take you on a journey that is well worth the effort.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted February 10, 2007

    Great supplement to science education

    Having majored in the humanities in college, I profess that my science education has lacked. This book fills some of those gaps, and although some of the theoretical physics was hard to follow, it was easy to understand why each of these contributions to 20th century understanding of science were picked. I highly recommend this book!

    Was this review helpful? Yes  No   Report this review
Sort by: Showing all of 2 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)