The Future of the Mind: The Scientific Quest to Understand, Enhance, and Empower the Mind

The Future of the Mind: The Scientific Quest to Understand, Enhance, and Empower the Mind

4.4 31
by Michio Kaku

View All Available Formats & Editions

Michio Kaku, the New York Times bestselling author of Physics of the Impossible and Physics of the Future tackles the most fascinating and complex object in the known universe: the human brain.

The Future of the Mind brings a topic that once belonged solely to the province of science fiction into a startling new

…  See more details below


Michio Kaku, the New York Times bestselling author of Physics of the Impossible and Physics of the Future tackles the most fascinating and complex object in the known universe: the human brain.

The Future of the Mind brings a topic that once belonged solely to the province of science fiction into a startling new reality. This scientific tour de force unveils the astonishing research being done in top laboratories around the world—all based on the latest advancements in neuroscience and physics—including recent experiments in telepathy, mind control, avatars, telekinesis, and recording memories and dreams. The Future of the Mind is an extraordinary, mind-boggling exploration of the frontiers of neuroscience. Dr. Kaku looks toward the day when we may achieve the ability to upload the human brain to a computer, neuron for neuron; project thoughts and emotions around the world on a brain-net; take a “smart pill” to enhance cognition; send our consciousness across the universe; and push the very limits of immortality.

Read More

Editorial Reviews

Since the publication of Michio Kaku's first book, Hyperspace, in 1994, the personable (his many media appearances testify to his charm), verbally gifted, enthusiastic, science-proselytizing physicist has shared his own feelings of awe at the universe and the humans who inhabit it. Reading one of his books is like hijacking Kaku's oversized intelligence and enthusiasms to stoke your own sense of wonder. The Future of the Mind is no exception.

This time around, Kaku is going to focus on inner space, not outer space. Proclaiming in his introduction that the universe and the human mind are the parallel and paramount subjects we must understand, Kaku intends to step us through the past couple of decades of neuro-discoveries, a period during which more has been learned about the human brain than in all prior history. And having grounded us, he will then extrapolate these findings to new heights.

It takes only a succinct and stimulating forty pages or so — the first chapter — for Dr. Kaku to summarize the state of our knowledge about the brain up to the revolutionary moment when the MRI and other high- tech tools appeared. He delivers a concise portrait of what we knew in those Dark Ages about the brain's enigmatic organization, cellular operations, and overall functionality, as determined by crude dissections and black-box experimentation. Then, before venturing to outline our current and more sophisticated understanding, he gives us in Chapter 2 a "space-time theory of consciousness," defining just what the intelligent brain does, in instances from bacteria on up to humanity. Now he and the reader are fully prepared to approach and appreciate the avant-garde findings, and so ends Book I, "The Mind and Consciousness."

In Book II, "Mind over Matter," Dr. Kaku delves into four main areas: telepathy, telekinesis, memories, and genius. He ushers us into laboratories he has personally visited — the list of scientists interviewed for this opus stretches to seven pages of close-set names — and shows us how the ability to detect, record, and interpret the signals of the brain during its daily operations leads naturally to such developments as brain-to-brain and brain-to-machine interfaces. Different modes of intelligence and intelligence amplification get a once-over, although prospects for baseline tinkering with the reasoning powers of the brain are less sanguine: "There are also indications from the laws of physics that we have reached the maximum natural limit of intelligence, so that any enhancement of our intelligence would have to come from external means." Get ready for Monty Python's strap-on brains.

Two observations about the book up to this point in the text. While many of the individual findings Kaku presents might ring a bell in the mind of the reader as having been spotted in past headlines, it's the grand accumulation of them all in one visionary presentation, and the syncretic drawing of connections among them, that is Kaku's unique contribution. Also of note: much of the discussion is illuminated by Kaku's frequent references to science fiction films and books. Outing himself up front as an SF fan from childhood, he has lots of fun with his citations, which convey in familiar layman's scenarios the speculations which he is discussing with greater accuracy and precision.

Book III is titled "Altered Consciousness," and while it exhibits a definite progression and scheme, it is something of a grab bag of topics, and I wonder if some themes should have been broken out under separate headers.

We begin still firmly rooted in the human realm, with a look at dreaming, mind control techniques, and such freakish states as out-of-body experiences. Dr. Kaku also extends his "space-time" formulation to cover mental illness as well. Here, as before, our guide devotes time to the many societal implications of the new sciences, affirming that any potential technologies do not exist in a vacuum.

Then, in Chapter 10, we shift to artificial intelligence, a somewhat big leap, although a little retroactive attention to the book's title reminds us that the discussion was never going to be limited to purely organic minds. We look at reverse-engineering the brain into some artificial substrate, then uploading it. Encoding the mind in pure energy is next, followed by some speculations on what a truly alien intelligence would look like, ending with some hopeful concluding remarks.

I found a few omissions of interesting folks: Howard Gardner, on the topic of multiple kinds of intelligence; Patricia Churchland, on issues of free will; and Mihaly Csikszentmihalyi, on that creative state he has dubbed "flow." I would have liked to learn about any advances in these realms. But such quibbles are moot in the face of Michio Kaku's wide-ranging, optimistic, and lively survey of the miracles contained in three pounds of gray matter — and its silicon and alien equivalents — that we all possess.

Author of several acclaimed novels and story collections, including Fractal Paisleys, Little Doors, and Neutrino Drag, Paul Di Filippo was nominated for a Sturgeon Award, a Hugo Award, and a World Fantasy Award — all in a single year. William Gibson has called his work "spooky, haunting, and hilarious." His reviews have appeared in The Washington Post, Science Fiction Weekly, Asimov's Magazine, and The San Francisco Chronicle.

Reviewer: Paul Di Filippo

Read More

Product Details

Knopf Doubleday Publishing Group
Publication date:
Sales rank:
Product dimensions:
6.30(w) x 9.40(h) x 1.60(d)

Read an Excerpt

Houdini believed that telepathy was impossible. But science is proving
Houdini wrong.

   Telepathy is now the subject of intense research at universities around the world, where scientists have already been able to use advanced sensors to read individual words, images, and thoughts in a person’s brain. This could alter the way we communicate with stroke and accident victims who are
“locked in” their bodies, unable to articulate their thoughts except through blinks. But that’s just the start. Telepathy might also radically change the way we interact with computers and the outside world.
   Indeed, in a recent “Next 5 in 5 Forecast,” which predicts five revolutionary developments in the next five years, IBM scientists claimed that we will be able to mentally communicate with computers, perhaps replacing the mouse and voice commands. This means using the power of the mind to call people on the phone, pay credit card bills, drive cars, make appointments,
create beautiful symphonies and works of art, etc. The possibilities are endless,
and it seems that everyone— from computer giants, educators, video game companies, and music studios to the Pentagon— is converging on this technology.

   True telepathy, found in science-fiction and fantasy novels, is not possible without outside assistance. As we know, the brain is electrical. In general,
anytime an electron is accelerated, it gives off electromagnetic radiation. The same holds true for electrons oscillating inside the brain, which broadcasts radio waves. But these signals are too faint to be detected by others, and even if we could perceive these radio waves, it would be difficult to make sense of them. Evolution has not given us the ability to decipher this collection of random radio signals, but computers can. Scientists have been able to get crude approximations of a person’s thoughts using EEG scans. Subjects would put on a helmet with EEG sensors and concentrate on certain pictures— say, the image of a car. The EEG signals were then recorded for each image and eventually a rudimentary dictionary of thought was created,
with a one- to- one correspondence between a person’s thoughts and the EEG
image. Then, when a person was shown a picture of another car, the computer would recognize the EEG pattern as being from a car.

   The advantage of EEG sensors is that they are noninvasive and quick.
You simply put a helmet containing many electrodes onto the surface of the brain and the EEG can rapidly identify signals that change every millisecond.
But the problem with EEG sensors, as we have seen, is that electromagnetic waves deteriorate as they pass through the skull, and it is difficult to locate their precise source. This method can tell if you are thinking of a car or a house, but it cannot re- create an image of the car. That is where Dr. Jack Gallant’s work comes in.

The epicenter for much of this research is the University of California at
Berkeley, where I received my own Ph.D. in theoretical physics years ago. I
had the pleasure of touring the laboratory of Dr. Gallant, whose group has accomplished a feat once considered to be impossible: videotaping people’s thoughts. “This is a major leap forward reconstructing internal imagery. We are opening a window into the movies in our mind,” says Gallant.
   When I visited his laboratory, the first thing I noticed was the team of young, eager postdoctoral and graduate students huddled in front of their computer screens, looking intently at video images that were reconstructed from someone’s brain scan. Talking to Gallant’s team, you feel as though you are witnessing scientific history in the making.

   Gallant explained to me that first the subject lies flat on a stretcher, which is slowly inserted headfirst into a huge, state- of- the- art MRI machine, costing upward of $3 million. The subject is then shown several movie clips (such as movie trailers readily available on YouTube). To accumulate enough data,
the subject has to sit motionless for hours watching these clips, a truly arduous task. I asked one of the postdocs, Dr. Shinji Nishimoto, how they found volunteers who were willing to lie still for hours on end with only fragments of video footage to occupy the time. He said the people in the room, the grad students and postdocs, volunteered to be guinea pigs for their own research.
As the subject watches the movies, the MRI machine creates a 3- D image of the blood flow within the brain. The MRI image looks like a vast collection of thirty thousand dots, or voxels. Each voxel represents a pinpoint of neural energy, and the color of the dot corresponds to the intensity of the signal and blood flow. Red dots represent points of large neural activity, while blue dots represent points of less activity. (The final image looks very much like thousands of Christmas lights in the shape of the brain. Immediately you can see that the brain is concentrating most of its mental energy in the visual cortex, which is located at the back of the brain, while watching these videos.)

   Gallant’s MRI machine is so powerful it can identify two to three hundred distinct regions of the brain and, on average, can take snapshots that have one hundred dots per region of the brain. (One goal for future generations of MRI technology is to provide an even sharper resolution by increasing the number of dots per region of the brain.)

   At first, this 3- D collection of colored dots looks like gibberish. But after years of research, Dr. Gallant and his colleagues have developed a mathematical formula that begins to find relationships between certain features of a picture (edges, textures, intensity, etc.) and the MRI voxels. For example, if you look at a boundary, you’ll notice it’s a region separating lighter and darker areas, and hence the edge generates a certain pattern of voxels. By having subject after subject view such a large library of movie clips, this mathematical formula is refined, allowing the computer to analyze how all sorts of images are converted into MRI voxels. Eventually the scientists were able to ascertain a direct correlation between certain MRI patterns of voxels and features within each picture.

   At this point, the subject is then shown another movie trailer. The computer analyzes the voxels generated during this viewing and re- creates a rough approximation of the original image. (The computer selects images from one hundred movie clips that most closely resemble the one that the subject just saw and then merges images to create a close approximation.) In this way, the computer is able to create a fuzzy video of the visual imagery going through your mind. Dr. Gallant’s mathematical formula is so versatile that it can take a collection of MRI voxels and convert it into a picture, or it can do the reverse, taking a picture and then converting it to MRI voxels.

   I had a chance to view the video created by Dr. Gallant’s group, and it was very impressive. Watching it was like viewing a movie with faces, animals,
street scenes, and buildings through dark glasses. Although you could not see the details within each face or animal, you could clearly identify the kind of object you were seeing.

   Not only can this program decode what you are looking at, it can also decode imaginary images circulating in your head. Let’s say you are asked to think of the Mona Lisa. We know from MRI scans that even though you’re not viewing the painting with your eyes, the visual cortex of your brain will light up. Dr. Gallant’s program then scans your brain while you are thinking of the Mona Lisa and flips through its data files of pictures, trying to find the closest match. In one experiment I saw, the computer selected a picture of the actress Salma Hayek as the closest approximation to the Mona Lisa. Of course, the average person can easily recognize hundreds of faces, but the fact that the computer analyzed an image within a person’s brain and then picked out this picture from millions of random pictures at its disposal is still impressive.

   The goal of this whole process is to create an accurate dictionary that allows you to rapidly match an object in the real world with the MRI pattern in your brain. In general, a detailed match is very difficult and will take years,
but some categories are actually easy to read just by flipping through some photographs. Dr. Stanislas Dehaene of the Collège de France in Paris was examining MRI scans of the parietal lobe, where numbers are recognized,
when one of his postdocs casually mentioned that just by quickly scanning the MRI pattern, he could tell what number the subject was looking at. In fact, certain numbers created distinctive patterns on the MRI scan. He notes,
“If you take 200 voxels in this area, and look at which of them are active and which are inactive, you can construct a machine-learning device that decodes which number is being held in memory.”

   This leaves open the question of when we might be able to have picture quality videos of our thoughts. Unfortunately, information is lost when a person is visualizing an image. Brain scans corroborate this. When you compare the MRI scan of the brain as it is looking at a flower to an MRI scan as the brain is thinking about a flower, you immediately see that the second image has far fewer dots than the first. So although this technology will vastly improve in the coming years, it will never be perfect. (I once read a short story in which a man meets a genie who offers to create anything that the person can imagine. The man immediately asks for a luxury car, a jet plane, and a million dollars. At first, the man is ecstatic. But when he looks at these items in detail, he sees that the car and the plane have no engines, and the image on the cash is all blurred. Everything is useless. This is because our memories are only approximations of the real thing.)

   But given the rapidity with which scientists are beginning to decode the
MRI patterns in the brain, will we soon be able to actually read words and thoughts circulating in the mind?


In fact, in a building next to Gallant’s laboratory, Dr. Brian Pasley and his colleagues are literally reading thoughts— at least in principle. One of the postdocs there, Dr. Sara Szczepanski, explained to me how they are able to identify words inside the mind.

   The scientists used what is called ECOG (electrocorticogram) technology,
which is a vast improvement over the jumble of signals that EEG scans produce. ECOG scans are unprecedented in accuracy and resolution, since signals are directly recorded from the brain and do not pass through the skull. The flipside is that one has to remove a portion of the skull to place a mesh, containing sixty-four electrodes in an eight-by-eight grid, directly on top of the exposed brain.

   Luckily they were able to get permission to conduct experiments with
ECOG scans on epileptic patients, who were suffering from debilitating seizures.
The ECOG mesh was placed on the patients’ brains while open- brain surgery was being performed by doctors at the nearby University of California at San Francisco.

   As the patients hear various words, signals from their brains pass through the electrodes and are then recorded. Eventually a dictionary is formed,
matching the word with the signals emanating from the electrodes in the brain. Later, when a word is uttered, one can see the same electrical pattern. This correspondence also means that if one is thinking of a certain word, the computer can pick up the characteristic signals and identify it.
With this technology, it might be possible to have a conversation that takes place entirely telepathically. Also, stroke victims who are totally paralyzed may be able to “talk” through a voice synthesizer that recognizes the brain patterns of individual words.

   Not surprisingly, BMI (brain- machine interface) has become a hot field,
with groups around the country making significant breakthroughs. Similar results were obtained by scientists at the University of Utah in 2011. They placed grids, each containing sixteen electrodes, over the facial motor cortex
(which controls movements of the mouth, lips, tongue, and face) and
Wernicke’s area, which processes information about language. The person was then asked to say ten common words, such as “yes” and “no,” “hot” and “cold,” “hungry” and “thirsty,” “hello” and “good- bye,” and “more” and “less.” Using a computer to record the brain signals when these words were uttered, the scientists were able to create a rough one- to- one correspondence between spoken words and computer signals from the brain.

   Later, when the patient voiced certain words, they were able to correctly identify each one with an accuracy ranging from 76 percent to 90 percent.
The next step is to use grids with 121 electrodes to get better resolution.
In the future, this procedure may prove useful for individuals suffering from strokes or paralyzing illnesses such as Lou Gehrig’s disease, who would be able to speak using the brain- to- computer technique.


At the Mayo Clinic in Minnesota, Dr. Jerry Shih has hooked up epileptic patients via ECOG sensors so they can learn how to type with the mind.
The calibration of this device is simple. The patient is first shown a series of letters and is told to focus mentally on each symbol. A computer records the signals emanating from the brain as it scans each letter. As with the other experiments, once this one- to- one dictionary is created, it is then a simple matter for the person to merely think of the letter and for the letter to be typed on a screen, using only the power of the mind.

   Dr. Shih, the leader of this project, says that the accuracy of his machine is nearly 100 percent. Dr. Shih believes that he can next create a machine to record images, not just words, that patients conceive in their minds. This could have applications for artists and architects, but the big drawback of
ECOG technology, as we have mentioned, is that it requires opening up patients’ brains.

   Meanwhile, EEG typewriters, because they are noninvasive, are entering the marketplace. They are not as accurate or precise as ECOG typewriters,
but they have the advantage that they can be sold over the counter. Guger
Technologies, based in Austria, recently demonstrated an EEG typewriter at a trade show. According to their officials, it takes only ten minutes or so for people to learn how to use this machine, and they can then type at the rate of five to ten words per minute.

Read More


Customer Reviews

Average Review:

Write a Review

and post it to your social network


Most Helpful Customer Reviews

See all customer reviews >

The Future of the Mind: The Scientific Quest to Understand, Enhance, and Empower the Mind 4.5 out of 5 based on 0 ratings. 30 reviews.
SharynR More than 1 year ago
MdExTx More than 1 year ago
I’m a fan of Michio Kaku after seeing him on various Discovery Channel and Science Channel programs so I was really glad to get an advance reading copy of his latest book from Doubleday and NetGalley. The subtitle of the book is “The Scientific Quest to Understand, Enhance and Empower the Mind”, and as I read Dr. Kaku’s descriptions of ongoing and future research into the human brain I kept running across things that made me say “Wow! I didn’t know they could do that!” The book is, in the jargon of the ‘60’s, “mind blowing”, meant with highest praise. Dr. Kaku summarizes the current state of scientific exploration of our brains and the current understanding of how our minds work in an eminently readable fashion that is understandable by a non-scientist. The book is divided into three sections; Book I: The Mind and Consciousness, Book II: Mind Over Matter, and Book III: Altered Consciousness. In Book I, Kaku gives the reader a brief history of brain research, beginning with Phineas Gage, the railroad worker who had a steel rod driven into his brain by an explosion in 1848. That incident was the first time that doctors could see that damage to the brain could change a person’s personality and led them to think that certain areas of the brain could be traced to certain behaviors. The chapter continues with a brief course in brain physiology which is useful since he refers to the parts of the brain extensively throughout the book and finishes up with a listing of all the ways our brains can be scanned and probed today to allow researchers to see what might be going on when we are performing tasks. Book II is where the mind blowing begins to happen; he recounts research that is aimed at allowing paralyzed people to control a robot hand to pick things up or even an exoskeleton to allow a paralyzed person to walk again. He also discusses the possibility of erasing and creating memories, and looks into whether or not it will be possible for science to make us more intelligent. In Book III Dr. Kaku explores the science fiction area of possible future brain research such as mind control and uploading our minds into artificial bodies so we can live forever, or even transmitting our consciousness across the galaxy by laser beam. Perhaps some of us alive today will live to see some of the things he discusses come to pass. If I don’t I really enjoyed at least finding out what some of the possibilities of the future might be. This book gives me hope that our species will continue to progress and grow. I recommend this book to anyone who is interested in current brain research, science in general or fans of Michio Kaku. He does not disappoint.
BruceAF More than 1 year ago
I'm only four chapters into the Book. He had me when He talked about the "ID" from my favorite move "Forbidden Planet". A MUST read!
Anonymous More than 1 year ago
Kaku is very recognized as a result of his  frequent TV appearances. I suppose there are more accomplished physicists around, but he is here. I am not hearing arguments against the correctness of his thoughts, so criticism seems petty.   
Anonymous More than 1 year ago
Future of the Mind is an in depth look at the many possible pathways the mind may possibly take and does! Kaki does all this in a way that one can understand without being a scientific genius, The book triggers our excitement while at same time brings about a high sense of anxiety! I believe the book should be read by every one who can read, it is scientific mystery dealing in reality,
GrandpaGuy More than 1 year ago
Though this book looks a little too far into the future for my taste, the author does stretch the limits of science to explore where brain technology could go in the next century. Science has learned more about the mind since I was born, and there's a long ways to go.
marygslp More than 1 year ago
I love this book. It is so informative. As a speech-language pathologist, the knowledge from this book helps me in my profession. Easy to read, informative. The neurological information is superb, up to date. I've also highlighted my favorite parts throughout the book for quick reference. Worth a look if you have a curious mind about the MIND!
Anonymous More than 1 year ago
Great Book! I also recommend Biocentrism and Hector's Juice!
Anonymous More than 1 year ago
Anonymous More than 1 year ago
Anonymous More than 1 year ago
Very insightful!
Anonymous More than 1 year ago
Michio Kaku does a great job romanticizing and opening the door of physics to the lay man. Throughout the book you will be introduced to many possibilities of the future, but topics are only grazed, and sometimes incomplete ideas are put forth as if they are truth. I thoroughly enjoyed this book for it's great breadth, and I would recommend it to anyone, but readers, do yourself a favor and form your own philosophical ideas.
Anonymous More than 1 year ago
Enjoy the tour de force on this mind bending brain freeze. Uh, I mean the future of your brain.
Anonymous More than 1 year ago
Incredible book. It lays it all out. Easy to understand. The plethora of information is compelling to see the wonder and awe of the brain and mind. Those who one star the book do it over politics, which this book is not about. It is a five star all the way. Job well done Dr. Kaku..
Anonymous More than 1 year ago
mosesmom More than 1 year ago
This book was a gift to my husband and he has enjoy it very much. Truly his type of reading.
Anonymous More than 1 year ago
Anonymous More than 1 year ago
Anonymous More than 1 year ago
Anonymous More than 1 year ago
This book gives a clear understanding of the mind, especially the human mind. Dr. Kaku's writing is erudite and comprehensible. I would recommend this book to anyone, over 16, maybe.
Anonymous More than 1 year ago
Anonymous More than 1 year ago
Anonymous More than 1 year ago
Anonymous More than 1 year ago
Anonymous More than 1 year ago