The Importance of Species: Perspectives on Expendability and Triage

The Importance of Species: Perspectives on Expendability and Triage

by Peter Kareiva

View All Available Formats & Editions

A great many species are threatened by the expanding human population. Though the public generally favors environmental protection, conservation does not come without sacrifice and cost. Many decision makers wonder if every species is worth the trouble. Of what consequence would the extinction of, say, spotted owls or snail darters be? Are some species

…  See more details below


A great many species are threatened by the expanding human population. Though the public generally favors environmental protection, conservation does not come without sacrifice and cost. Many decision makers wonder if every species is worth the trouble. Of what consequence would the extinction of, say, spotted owls or snail darters be? Are some species expendable?

Given the reality of limited money for conservation efforts, there is a compelling need for scientists to help conservation practitioners set priorities and identify species most in need of urgent attention. Ecology should be capable of providing guidance that goes beyond the obvious impulse to protect economically valuable species (salmon) or aesthetically appealing ones (snow leopards). Although some recent books have considered the ecosystem services provided by biodiversity as an aggregate property, this is the first to focus on the value of particular species. It provides the scientific approaches and analyses available for asking what we can expect from losing (or gaining) species.

The contributors are outstanding ecologists, theoreticians, and evolutionary biologists who gathered for a symposium honoring Robert T. Paine, the community ecologist who experimentally demonstrated that a single predator species can act as a keystone species whose removal dramatically alters entire ecosystem communities. They build on Paine's work here by exploring whether we can identify species that play key roles in ecosystems before they are lost forever. These are some of our finest ecologists asking some of our hardest questions.

They are, in addition to the editors, S.E.B. Abella, G. C. Chang, D. Doak, A. L. Downing, W. T. Edmondson, A. S. Flecker, M. J. Ford, C.D.G. Harley, E. G. Leigh Jr., S. Lubetkin, S. M. Louda, M. Marvier, P. McElhany, B. A. Menge, W. F. Morris, S. Naeem, S. R. Palumbi, A. G. Power, T. A. Rand, R. B. Root, M. Ruckelshaus, J. Ruesink, D. E. Schindler, T. W. Schoener, D. Simberloff, D. A. Spiller, M. J. Wonham, and J. T. Wootton.

Editorial Reviews

Ecology - Gareth J. Russell
I recommend this book both as practical advice for conservation practitioners, and as a summary of recent theory and experiments for any ecologist interested in the interface between species and their communities and ecosystems.
From the Publisher
"I recommend this book both as practical advice for conservation practitioners, and as a summary of recent theory and experiments for any ecologist interested in the interface between species and their communities and ecosystems."—Gareth J. Russell, Ecology
I recommend this book both as practical advice for conservation practitioners, and as a summary of recent theory and experiments for any ecologist interested in the interface between species and their communities and ecosystems.
— Gareth J. Russell

Product Details

Princeton University Press
Publication date:
Product dimensions:
6.10(w) x 9.10(h) x 1.10(d)

Read an Excerpt

The Importance of Species

Perspectives on Expendability and Triage

By Peter Kareiva, Simon A. Levin


Copyright © 2003 Princeton University Press
All rights reserved.
ISBN: 978-1-4008-6677-9


Native Thistles: Expendable or Integral to Ecosystem Resistance to Invasion?

Svatta M. Louda and Tatyana A. Rand

One way of addressing the question of whether some species are expendable is to ask what role, if any, a minor species, even one that seems obnoxious, plays in the functioning of its community. Thistles (Cirsium spp.) are prickly plants native to North America that are numerically minor and are often considered unattractive or undesirable. So, thistles might be considered expendable. Yet, can we assume that such minor, seemingly undesirable species can be eliminated without disrupting important interdependencies or losing key ecological services? Our long-term studies of thistle-insect interactions are beginning to provide evidence that even such species may play important, unexpected roles in ecological dynamics and in economic welfare. These studies suggest that determining the cost of losing a species requires criteria other than relative abundance and general attractiveness (see Root this volume).

In this chapter, we summarize the natural history of the native Cirsium species, which we study in the upper Great Plains. Then, we briefly review experimental evidence that the native insects that feed on native thistles can restrict their abundance and weediness. Finally, we present new observational data suggesting that these native insects, moving over from a native species such as tall thistle (Cirsium altissimum (L.) Spreng.), are likely involved in limiting the invasion of bull thistle, Cirsium vulgare (Savi) Ten., in the tallgrass prairie region of Nebraska. Bull thistle is a Eurasian species that is highly invasive elsewhere (Austin et al. 1985; Randall 1991; Julien and Griffiths 1998; Olckers and Hill 1999) and often becomes expensive to control in agronomic regions around the world. Such invasions of nonindigenous species can present major economic and ecological threats to ecosystem structure and functioning (Mooney and Drake 1986; Drake et al. 1989; Simberloff et al. 1997). We hypothesize that our study represents a case of a numerically minor species that, acting as a reservoir of native insects, provides an ecologically and economically valuable ecosystem service: resistance to invasion by an alien weed. The case also suggests that more research on the potential biotic resistance provided by natural enemies may help us better understand those factors that influence whether an alien species becomes invasive after naturalization.

Based on our studies, we argue that there are practical as well as aesthetic and ethical reasons for working to maintain minor, even seemingly obnoxious, species and their interactions. In particular, this case suggests that we are not yet in a position to predict the cost associated with the decline and loss of a specific species, since its ecological function and economic value may not be obvious.

Natural History Background

The thistle genus Cirsium (L.), indigenous in Eurasia, North America, and North and East Africa, contains about 250 species (Bremer 1994). The North American contingent of this genus is represented by at least 96 indigenous, endemic taxa (USDA, NRCS 1999). We have extensive quantitative data on four native species that are characteristic of the prairie grasslands of the upper Great Plains. All typically occur singly or in small stands, and none are considered major weeds (McCarty et al. 1967; Louda et al. 1990; Stubbendieck et al. 1994). The data presented here are for the native tall thistle (Cirsium altissimum (L.) Spreng.), a late-flowering monocarpic species in the tallgrass region of Nebraska (McCarty et al. 1967), and the naturalized Eurasian thistle species bull (spear) thistle (Cirsium vulgare (Savi) Tenore), also a late-flowering monocarpic species that occurs as small stands in disturbed roadside or overgrazed grassland in Nebraska. Although several alien thistles are listed as noxious weeds in Nebraska, bull thistle is not. Our studies of tall and bull thistles were conducted in Lancaster County, east of the City of Lincoln.

As fugitive species, the performance and density of thistles are related to the availability of seed, the level and spacing of disturbance, and the vigor of grass competition (Hamrick 1983; Hamrick and Lee 1987; Louda et al. 1990, 1992; Popay and Medd 1990; Louda and McEachern 1995; Louda and Potvin 1995; Bevill and Louda 1999). Seed availability usually limits local thistle seedling density in open grasslands (see de Jong and Klinkhamer 1986; Louda and McEachern 1995; Louda and Potvin 1995).

Thistles have a suite of adapted insects (Zwölfer 1965, 1988; Lamp and McCarty 1979, 1981, 1982a, b; Redfern 1983; Zwölfer and Romstöck-Völkl 1991). The most common insects specializing on Cirsium species in Nebraska are picture-winged flies (Tephritidae), weevils (Curculionidae), moths (Pyralidae, Pterophoridae), butterflies (Nymphalidae, Hesperiidae), lacebugs (Tingidae), aphids (Aphididae), and sucking bugs (Hemiptera: Cicadellidae, Membracidae, Miridae, Pentatomidae). Several studies demonstrate that these native insects significantly affect key components of individual plant fitness (Louda et al. 1990, 1992; Louda and Potvin 1995; Guretzky and Louda 1997; Stanforth et al. 1997; Bevill 1998; Jackson 1998; Bevill et al. 1999).

There is also evidence that thistle-feeding insects often adopt similar hosts in alternate or novel environments. For example, several thistle-feeding insects have been imported from Eurasia and released in the United States by the U.S. Department of Agriculture as biological control agents for exotic thistles (Julien and Griffiths 1998). At least two of the weevils being distributed for the control of alien thistles have also adopted native species as hosts; these include Rhinocyllus conicus Fröl. (Louda et al. 1997; Louda and Arnett 2000) and Larinus planus (F.) (Louda and O'Brien 2002).

In sum, since insects can reduce plant performance of thistles and since host range expansion in thistle-feeding insects occurs, the potential clearly exists for native insects to adopt potentially invasive thistles as hosts. If this is the case, these insects likely play a role in limiting the reproduction and spread of nonindigenous thistles that are closely related, or ecologically similar, to native species.

Native Insect Herbivores Limit Densities of Indigenous Thistles

Multiple studies of the role of coevolved insects in the population dynamics of native thistles in prairie grasslands have demonstrated clearly that native insects significantly decrease the survival, growth, reproduction, lifetime fitness, and density of native thistles under field conditions. These experiments document significant reductions by insect herbivores of (1) juvenile survivorship and growth (Guretzky and Louda 1997; Stanforth et al. 1997; Bevill et al. 1999), especially in the context of competition with grasses (Louda et al. 1990, 1992); (2) subsequent flowering effort of surviving plants (Bevill 1998; Bevill et al. 1999); (3) successful seed maturation (Louda et al. 1990, 1992; Louda and McEachern 1995; Louda and Potvin 1995; Jackson 1998; Louda 1999a, b; Maron et al. unpub. data); (4) lifetime fitness (Louda and Potvin 1995); and (5) seedling, juvenile, and adult densities (Louda and Potvin 1995). Populations of the monocarpic thistles have been shown to be seed-limited in undamaged prairie grassland (Louda and Potvin 1995). Platte thistle density, for example, increased 100–600% when floral insect herbivores were reduced, especially in disturbances but also in ungrazed prairie (Louda et al. 1990, 1992; Louda and Potvin 1995). Individually, these studies show that coevolved thistle-feeding insects significantly reduce key parameters of individual plant performance. Collectively, the studies suggest that the chronic pressure exerted by a diverse, dependent assemblage of adapted natural enemies often limits population density and patch regeneration of native thistles in grasslands under indigenous conditions.

Native Thistle Harbors Insects that Attack an Exotic Thistle

Ecosystem resistance to invasion has been listed as an important property of intact ecosystems (e.g., Daily 1997). One mechanism that produces such resistance to exotic plant invasion is competition from native plants (see Drake et al. 1989; McKnight 1993; Mack 1996). Herbivory by native insects could be another mechanism that reduces the invasiveness of some nonindigenous plant species (Louda 1999b). In this case, insects from a native thistle contribute significant resistance to the potential for invasive population growth and spread by bull (spear) thistle, Cirsium vulgare (Savi) Ten., in eastern Nebraska.

Bull thistle, a Eurasian species, is an aggressive weed in many areas of the world. Its invasive potential is clear from published descriptions, studies, and control efforts in grazed grasslands of Australia, New Zealand, and South Africa (e.g., Austin et al. 1985; Julien and Griffiths 1998; Olckers and Hill 1999) and in natural areas of California (Randall 1991). However, although bull thistle has been present in the tallgrass prairie region of eastern Nebraska for at least 35 years, its numbers remain relatively low (C. P. Andersen and S. M. Louda, unpub. data). Contemporary agricultural practices control weeds, including bull thistle, within crop fields, but numbers have also remained low in roadsides and perennial pastures despite disturbance and grazing. Bull thistle is not common enough to be classified as a major weed throughout eastern Nebraska.

Native insects from the indigenous tall thistle have included the potentially invasive Eurasian thistle in their diet. When native insect herbivores fed on developing buds and flowering heads, the seed production of bull thistle in Nebraska was severely reduced. In Lancaster County, for example, insects destroyed 88% of the potential seed production by bull thistle plants sampled in 1997, 79% in 1998, and 71% in 1999, significantly reducing the reproductive success of bull thistle (fig. 1.1). At least four insects were often found feeding on or in the reproductive shoots and developing flower heads of bull thistle. These insects were Platyptilia carduidactyla (Riley) (Pterophoridae), Baris subsimilis Casey (Curculionidae), Papaipema mitela Guen. (Noctuidae), and Paracantha culta Wiedeman (Tephritidae). All these species typically feed on or in the reproductive shoots and developing flower heads of the native, tall thistle (Louda, pers. obs.). Feeding by these insects severely reduced the number of flower heads that matured and the number of viable seeds that were produced by the native tall thistle from 1994 to 1995 (Jackson 1998) and from 1997 to 1999 (fig. 1.2), significantly reducing reproductive success. The levels of use of bull thistle were also high, though not as high as those observed on the native tall thistle (see fig. 1.1 vs. fig. 1.2; Jackson 1998; Louda, unpub. data). Thus, the adapted, dependent insects of native thistles are exerting tremendous "pest resistance pressure" on this exotic, potentially invasive weed under its newly adopted conditions in eastern Nebraska.

Our previous experiments, in addition, have shown that herbivory by native insects on tall thistle further limits the survival and growth of young plants (Guretzky and Louda 1997) and the flowering success of older individuals (Jackson 1998). Subsequent competition with grasses for nutrients and moisture, known to restrict the success of established thistles (Austin et al. 1985; Hamrick 1983; Hamrick and Lee 1987; Popay and Medd 1990), likely reduces plant density further by limiting the survival and growth of the seedlings that do establish. If the consequences of insect feeding on bull thistle are similar to those for tall thistle—and this is currently being tested (L. M. Young, unpub. data)—then population growth and the development of high densities of bull thistle are opposed by the pressure exerted on this exotic thistle by native insects, insects—that are adapted to and maintained by a thistle native to this region. Disruption of these interactions, through a loss of the native thistle and its reservoir of native insects, would be expected to increase the probability of a full-blown invasion by bull thistle, as has occurred elsewhere. Thus, loss of the native thistle and its insects could create a more noxious, economic weed out of a currently innocuous exotic plant.


The reasons for preserving species are scientific, functional, and practical. First, studies of thistle dynamics and interactions have contributed basic ecological insights into how biological interactions can structure, limit, and influence the numerical abundance and distribution of native plants in grasslands (e.g., Louda et al. 1990, 1992; Louda and Potvin 1995; Guretzky and Louda 1997; Jackson 1998; Bevill et al. 1999). Furthermore, parallel studies have added to an understanding of the role of interactions in plant rarity (Louda and McEachern 1995; Stanforth et al. 1997; Bevill and Louda 1999; Bevill et al. 1999).

Second, thistles contribute to the support of a broad array of animal species. In the Great Plains prairies, for example, at least 35 other species use native North American thistles (Louda, unpub. data). These species range from microscopic plant parasites (that harbor potentially useful secondary compounds) to macroscopic animals, including charismatic ones (e.g., as the American Goldfinch) and their predators (e.g., raptors) (Louda et al. 1998). Would such species decline if the native thistle were eliminated? No good answer exists yet.

Third, our data suggest that a native thistle can support a set of herbivorous insects that contribute to a major ecosystem service: the limitation of a potential weed. Native insects limit the seed production and density of populations of native thistles in native and disturbed grasslands (Louda and Potvin 1995; Guretzky and Louda 1997; Bevill et al. 1999). In addition, these insects are contributing to the suppression of the potentially invasive, exotic bull thistle, Cirsium vulgare.

What important role, then—if any—can minor, seemingly obnoxious species play? In this case, the data suggest that a prickly, inconspicuous native plant, tall thistle, supports insect herbivores that dramatically reduce the seed production of an incipient invasive species, likely constraining the density and the rate of spread of a potentially serious economic and environmental weed. Thus, we hypothesize that elimination of the native tall thistle would likely have at least one negative ecosystem response with economic implications. Its reduction and loss would be expected to cause a reduction of temporally synchronized adapted insects, decreasing resistance to invasion by the exotic species. Bull thistle would likely become a much greater problem—reaching a status similar to that in other rangeland regions—without indigenous thistles to harbor adapted, thistle-feeding insects.

Following Bob Paine's example, several key experiments are now underway to test the hypothesis of significant ecosystem resistance provided by tall thistle. These experiments will quantify bull thistle response to (1) increased seed input, to address the question of whether population density is proportional to seed availability; (2) the exclusion of native insect herbivores, to address the question of whether potential seed production is limited by resources or factors other than intensive herbivory; and (3) the removal of neighboring native thistles, to address the question of whether proximity of native thistles influences the native insect use of bull thistle directly, as suggested by observational data (C. P. Andersen and S. M. Louda, unpub. data).


Excerpted from The Importance of Species by Peter Kareiva, Simon A. Levin. Copyright © 2003 Princeton University Press. Excerpted by permission of PRINCETON UNIVERSITY PRESS.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

What People are saying about this

G. David Tilman
I have great regard for this book, which addresses a new and highly important question: are some species expendable? It is a book that, given the complexity of the subject, necessarily speaks with many voices. It draws together an outstanding team of scholars and is well written and unusually well organized and synthetic.
G. David Tilman, Distinguished McKnight University Professor, University of Minnesota
H. Charles J. Godfray
This book deals with issues at the cutting edge of contemporary ecology and has no direct competitors. The editors have succeeded in assembling an impressive group of authors—from major established figures to the best young guns—to produce an interesting and frequently provocative series of chapters.
H. Charles J. Godfray, Director, NERC Centre for Population Biology

Customer Reviews

Average Review:

Write a Review

and post it to your social network


Most Helpful Customer Reviews

See all customer reviews >