The Logical Solution Syracuse Conjecture

The first time I faced Syracuse conjecture I thought it was easier to start from any number n and to arrive to ni < n rather than fall down to 1. In this way I could not take into consideration even numbers, because if n is even then n → n/2 < n. So I had only to examine the odd numbers. In addition to the proof proposed by me, I have discovered many properties and peculiarities of this famous conjecture. It hides the magical harmony of odd numbers, and may be a type of law on the expansion of Cosmos based on the power of 2, as prophesied by Plato in some of his writings. So my work takes on a popular and didactic value of this marvelous conjecture. In this paper I have only used arithmetic and elementary number theory, but, in spite of its simple enunciation, Syracuse Conjecture is a difficult topic, therefore this article needs a lot of patience in reading for a well-understanding. I have considered that various applications and examples were needed for better explain my work.

1144510664
The Logical Solution Syracuse Conjecture

The first time I faced Syracuse conjecture I thought it was easier to start from any number n and to arrive to ni < n rather than fall down to 1. In this way I could not take into consideration even numbers, because if n is even then n → n/2 < n. So I had only to examine the odd numbers. In addition to the proof proposed by me, I have discovered many properties and peculiarities of this famous conjecture. It hides the magical harmony of odd numbers, and may be a type of law on the expansion of Cosmos based on the power of 2, as prophesied by Plato in some of his writings. So my work takes on a popular and didactic value of this marvelous conjecture. In this paper I have only used arithmetic and elementary number theory, but, in spite of its simple enunciation, Syracuse Conjecture is a difficult topic, therefore this article needs a lot of patience in reading for a well-understanding. I have considered that various applications and examples were needed for better explain my work.

10.99 In Stock
The Logical Solution Syracuse Conjecture

The Logical Solution Syracuse Conjecture

by Rolando Zucchini
The Logical Solution Syracuse Conjecture

The Logical Solution Syracuse Conjecture

by Rolando Zucchini

eBook

$10.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

The first time I faced Syracuse conjecture I thought it was easier to start from any number n and to arrive to ni < n rather than fall down to 1. In this way I could not take into consideration even numbers, because if n is even then n → n/2 < n. So I had only to examine the odd numbers. In addition to the proof proposed by me, I have discovered many properties and peculiarities of this famous conjecture. It hides the magical harmony of odd numbers, and may be a type of law on the expansion of Cosmos based on the power of 2, as prophesied by Plato in some of his writings. So my work takes on a popular and didactic value of this marvelous conjecture. In this paper I have only used arithmetic and elementary number theory, but, in spite of its simple enunciation, Syracuse Conjecture is a difficult topic, therefore this article needs a lot of patience in reading for a well-understanding. I have considered that various applications and examples were needed for better explain my work.


Product Details

BN ID: 2940167661554
Publisher: Mnamon
Publication date: 12/13/2023
Sold by: Smashwords
Format: eBook
File size: 4 MB

About the Author

Born in Foligno (Umbria – Italy) on June 6, 1947. Degree in Mathematics (1972) at the University of Perugia, with a thesis on non-Euclidean geometry. He taught mathematics in high schools with innovative teaching methods, linking it to its history and philosophy.

From the B&N Reads Blog

Customer Reviews