The Mahalanobis-Taguchi Strategy: A Pattern Technology System / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
$148.70
Used and New from Other Sellers
Used and New from Other Sellers
from $116.06
Usually ships in 1-2 business days
(Save 27%)
Other sellers (Hardcover)
  • All (7) from $116.06   
  • New (4) from $127.56   
  • Used (3) from $116.06   

Overview

Cutting-edge measurement technology for multidimensional systems
The Mahalanobis-Taguchi Strategy presents methods for developing multidimensional measurement scales that are up to date with the most current trends in multivariate diagnosis/pattern recognition-namely, using measures and procedures that are data analytic and not dependent upon the distribution of the characteristics defining the system. Applications for these measurement scales are also explored across a wide range of disciplines from manufacturing to medicine.
This book presents methods that integrate mathematical and statistical concepts such as Mahalanobis distance and Gram-Schmidt's orthogonalization method with the principles of Taguchi methods. These completely new systems of measurement and analysis move beyond anything Dr. Taguchi has done in the past. Coverage includes the refined Mahalanobis-Taguchi system, the Mahalanobis-Taguchi-Gram-Schmidt method, the Adjoint Matrix method, and other advanced topics, along with a detailed examination of each method. In addition to examining how real-world problems are solved using these methods, critical comparisons are made between the methods covered here and existing multivariate diagnosis/pattern recognition techniques.
The Mahalanobis-Taguchi Strategy: A Pattern Technology System is an essential book for engineers, designers, and statistical quality experts and programmers in the fields of engineering and computer science, as well as researchers in finance, medicine, statistics, and general science.
Read More Show Less

Product Details

  • ISBN-13: 9780471023333
  • Publisher: Wiley
  • Publication date: 5/28/2002
  • Edition number: 1
  • Pages: 256
  • Product dimensions: 6.30 (w) x 9.72 (h) x 0.70 (d)

Meet the Author

GENICHI TAGUCHI, DSc, is Executive Director of the American Supplier Institute and President of Ohken Associates in Japan. Dr. Taguchi, an international authority in quality engineering and robust design, has been awarded the prestigious Deming Prize in 1960 and Willard F. Rockwell Medal in 1986. He was the recipient of the 1995 ASQ's Shewhart medal. In 1998, Dr. Taguchi was elected as an Honorary Member of the ASQ, the ASME, and the Honorary Chairman of the Japanese Quality Engineering Society. He was inducted into the World Level of the Hall of Fame for Engineering, Science, and Technology, USA, in 1998, and the Automotive Hall of Fame, USA, in 1997. In 2000, he was recognized as the Quality Champion of the twentieth century. He authored or coauthored more than 400 technical articles in leading journals and forty books.

RAJESH JUGULUM, Ph.D. is a researcher in the Department of Mechanical Engineering of Massachusetts Institute of Technology. In 2000, he completed his Ph.D. under the guidance of Dr. Genichi Taguchi in Wayne State University. In 1999, he shared ASQ research fellowship grant and in 2000 he received ASQ's Richard A. Freund international scholarship. He was featured as "Face of Quality" in September 2001 issue of Quality Progress. He is the recipient of 2002 ASQ's Feigenbaum medal. He has authored or co-authored several articles in leading technical journals. He is a member of the ASQ and the Japanese Quality Engineering Society and a Fellow of the Royal Statistical Society.

Read More Show Less

Table of Contents

Preface.

Acknowledgments.

Terms and Symbols.

Definitions of Mathematical and Statistical Terms.

1 Introduction.

1.1 The Goal.

1.2 The Nature of a Multidimensional System.

1.3 Multivariate Diagnosis-The State of the Art.

1.4 Approach.

1.5 Refining the Solution Strategy.

1.6 Guide to This Book.

2 MTS and MTGS.

2.1 A Discussion of Mahalanobis Distance.

2.2 Objectives of MTS and MTGS.

2.3 Steps in MTS.

2.4 Steps in MTGS.

2.5 Discussion of Medical Diagnosis Data: Use of MTGS and MTS Methods.

2.6 Conclusions.

3 Advantages and Limitations of MTS and MTGS.

3.1 Direction of Abnormalities.

3.2 Example of a Graduate Admission System.

3.3 Multicollinearity.

3.4 A Discussion of Partial Correlations.

3.5 Conclusions.

4 Role of Orthogonal Arrays and Signal-to-Noise Ratios in Multivariate Diagnosis.

4.1 Role of Orthogonal Arrays.

4.2 Role of S/
N Ratios.

4.3 Advantages of S/
N ratios.

4.4 Conclusions.

5 Treatment of Categorical Data in MTS/MTGS Methods.

5.1 MTS/
MTGS with Categorical Data.

5.2 A Sales and Marketing Application.

5.3 Conclusions.

6 MTS/
MTGS under a Noise Environment.

6.1 MTS/
MTGS with Noise Factors.

6.2 Conclusions.

7 Determination of Thresholds-A Loss Function Approach.

7.1 Why Threshold Is Required in MTS/
MTGS.

7.2 Quadratic Loss Function.

7.3 QLF for MTS/
MTGS.

7.4 Examples.

7.5 Conclusions.

8 Standard Error of the Measurement Scale.

8.1 Why Mahalanobis Distance Is Used for Constructing the Measurement Scale.

8.2 Standard Error of the Measurement Scale.

8.3 Standard Error for the Medical Diagnosis Example.

8.4 Conclusions.

9 Advance Topics in Multivariate Diagnosis.

9.1 Multivariate Diagnosis Using the Adjoint Matrix Method.

9.2 Examples for the Adjoint Matrix Method.

9.3 -Adjustment Method for Small Correlations.

9.4 Subset Selection Using the Multiple Mahalanobis Distance Method.

9.5 Selection of Mahalanobis Space from Historical Data.

9.6 Conclusions.

10 MTS/
MTGS versus Other Methods.

10.1 Principal Component Analysis.

10.2 Discrimination and Classification Method.

10.3 Stepwise Regression.

10.4 Test of Additional Information (Rao's Test).

10.5 Multiple Regression Analysis.

10.6 Multivariate Process Control.

10.7 Artificial Neural Networks.

10.8 Conclusions.

11 Case Studies.

11.1 American Case Studies.

11.2 Japanese Case Studies.

11.3 Conclusions.

12 Concluding Remarks.

12.1 Important Points of the Proposed Methods.

12.2 Scientific Contributions from MTS/MTGS Methods.

12.3 Limitations of the Proposed Methods.

12.4 Recommendations for Future Research.

Bibliography.

Appendixes.

A.1 ASI Data Set.

A.2 Principal Component Analysis (MINITAB Output).

A.3 Discriminant and Classification Analysis (MINITAB Output).

A.4 Results of Stepwise Regression (MINITAB Output).

A.5 Multiple Regression Analysis (MINITAB Output).

A.6 Neural Network Analysis (MATLAB Output).

A.7 Variables for Auto Marketing Case Study.

Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)