The Melting World: A Journey Across America's Vanishing Glaciers

The Melting World: A Journey Across America's Vanishing Glaciers

by Christopher White
The Melting World: A Journey Across America's Vanishing Glaciers

The Melting World: A Journey Across America's Vanishing Glaciers

by Christopher White

eBook

$11.99 

Available on Compatible NOOK Devices and the free NOOK Apps.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Global warming usually seems to happen far away, but one catastrophic effect of climate change is underway right now in the Rocky Mountains. In The Melting World, Chris White travels to Montana to chronicle the work of Dan Fagre, a climate scientist and ecologist, whose work shows that alpine glaciers are vanishing rapidly close to home. For years, Fagre has monitored the ice sheets in Glacier National Park proving that they—and by extension all Rocky Mountain ice—will melt far faster than previously imagined. How long will the ice fields survive? What are the consequences on our environment? The Melting World chronicles the first extinction of a mountain ecosystem in what is expected to be a series of such global calamities as humanity faces the prospect of a world without alpine ice.

Product Details

ISBN-13: 9781250028853
Publisher: St. Martin's Publishing Group
Publication date: 09/03/2013
Sold by: Macmillan
Format: eBook
Pages: 288
File size: 2 MB

About the Author

CHRISTOPHER WHITE has written several books, including Skipjack: The Story of America's Last Sailing Oystermen, and written for National Geographic, Exploration, and other publications. He lives in Santa Fe, New Mexico.


Christopher White has written numerous books, including Skipjack: The Story of America’s Last Sailing Oystermen and The Melting World: A Journey Across America’s Vanishing Glaciers. His articles have appeared in Audubon, The Baltimore Sun, The New Mexican, National Geographic, and Exploration. He grew up on the shores of the Chesapeake Bay.

Read an Excerpt

The Melting World

A Journey Across America's Vanishing Glaciers


By Christopher White

St. Martin's Press

Copyright © 2013 Christopher White
All rights reserved.
ISBN: 978-1-250-02885-3



CHAPTER 1

YEAR ONE Into the Cirque


Straddling a bright blue crevasse, Dan Fagre stands alone, dwarfed by the ice before him. It stretches for a quarter mile — nearly half a kilometer — in every direction. But the freeze is turning to a rapid thaw. The imposing alpine glacier, launched years ago by a cooling climate, is heating up. Fagre is stripped to a green T-shirt and can feel the warmth — it's another record-breaking summer. Cubes and blocks are crumbling: Small streamlets drain the ice. Fagre, a government scientist, has climbed 3,000 feet (914 meters) to take the pulse of the melting colossus.

Still huge by human dimensions, Grinnell Glacier is one of the last Rocky Mountain giants. Nestled in the mountain cirque, the stadium-like bowl at Fagre's feet, the glacier is enormous — over 150 acres broad and 320 feet (98 meters) thick at the center. However, before man lit a modern match on this continent, it was more than triple that size. Otherwise, the ice field looks about the same as it has since the dawn of industry. Blinding white snow and dull ivory ice cover most of the cirque, from headwall to foot, except for the distant moraines — the exposed rock rubble at the edges. The retreating white glacier has left a brown and barren apron about its periphery. High and low, Grinnell is a study in contrast. Below its foot is silver: Its toe produces a steady stream of glistening ice water that flows over black rocks.

Beneath the ice terminus is an immense lake of meltwater, Upper Grinnell Lake, the glacier's drippings; the lake in turn is vented by another alpine stream that cascades over the lip of the cirque toward the Many Glacier Valley below. From there, the stream joins the St. Mary's River, barreling north through Canada to Hudson Bay, home of the polar bear, where briefly some of the water will reconstitute as ice, before melting again. At both ends of the watershed — alpine and arctic — the ice is slipping away.

I have traveled from my home along the foothills of the New Mexican Rockies to Montana to write a profile on Dan Fagre, the leading glacier expert in the country. For years, I have written about water — topics from sailing to canoeing to diving — but now I return to my first passion: mountaineering. Peaks and glaciers have always meant solitude and freedom to me. More recently, the melting of the ice fields has been troubling: What will the loss of all that alpine water mean? Most of what I've heard about climate change is remote either in time or distance — impacts that are a century removed or that are as far away as the poles. The search for local and immediate manifestations of warming has brought me to Glacier National Park, to learn what I can about our future. I feel like one of those lookouts on the Titanic, tracking the path of fractured and melting ice.

The distress calls will come soon enough. Fagre picks up a ball of snow from the crest of the crevasse and lifts it to his mouth. It crumbles in his hand like sand. He blows the last snowflakes into the August wind, and a fraction of them boomerang, stinging his face. The snow in the cirque, he says, given enough time, will turn to ice, and the ice to meltwater, the fresh water joining the sea. Formerly this was a slow geologic process. But the planet is warming at an unprecedented rate. Already, the burning of fossil fuels has elevated the average temperature of the planet by more than 1.5 degrees F (nearly 1 degree C); the heat keeps climbing. Montana snow from the 1960s, converted into ice, is tumbling into the lake. And melting.

Grinnell Glacier is just one of many to suffer. Worldwide, mountain glaciers are on a fast track to oblivion. They are expected to vanish faster than polar ice, both north and south. Grinnell and the other ice-age remnants of Glacier National Park, Montana, may be the first to extinguish at altitude — they are among the most exposed glaciers in North America (and, relatively, the smallest) and thus most susceptible. In 1850, nearly 150 of these glaciers populated the Rocky Mountains of northwest Montana, what would become the Park in 1910. By 1966, there were thirty-seven glaciers or fewer. In 2008, as I tromp around Grinnell, there are twenty-seven. Fagre knows them all.

Dan Fagre (pronounced FAY-gree) is a research ecologist turned glacier scientist. He has been monitoring the Rockies' northern glaciers for nearly twenty years — checking their pulse. He also takes the temperature of the glaciers' snowpack. He measures their dimensions and densities. He gauges their mass. Fagre is a diagnostician. He is the official monitor of the health and lifespan of glaciers in Montana. In 2003, he predicted that, in the face of climate disruption, the largest ice field in the Park (Blackfoot Glacier) would vanish by 2030 — nearly thirty years hence. The day he explores Grinnell with me, five years into his forecast, he is reading the glaciers again to see if his timeline is correct. He may have to recalculate.

Within our immediate view are three glaciers — Grinnell, Salamander, and Gem — all of which were connected before a big meltdown split them into a triptych at the dawn of the American industrial age — the advent of factories coughing carbon smoke. Salamander and Gem are poised above the headwall at the back of the cirque like crusted snow on a rooftop. The two overhanging glaciers seem teetering for a crash — each an ice avalanche frozen in time. Stepping back from the gaping crevasse at his feet, Fagre points to these two small glaciers overhead and talks of reading the ice.

"We use sophisticated technology to measure the ice," he says to me, "but we can pretty much tell the health of a glacier by eyeballing it." He points upward, to the left. "Take Gem — that round jewel glistening above the headwall — it's impossible to reach on foot. But from a distance we can tell it's still moving, creeping downhill, because you can see crevasses at its base, just before it slips over the cliff. So we know it's a viable glacier, not just a snowfield."

A living glacier is always on the move, kicking and carving its way downhill.

Fagre traces the outline of Gem and then lowers his eyes to Grinnell, sketching its features with his finger. "Gem is shrinking," he continues, "but the real loser is Grinnell, the mother glacier for this valley. Look at the lateral moraine, that pile of rock and rubble plowed aside by the glacier. The ice is at least 200 yards (183 meters) short of it now — that's how much the ice sheet has contracted in 160 years." Fagre turns his back to me to scan the side moraine. I notice some fir saplings growing in new soil, where ice once roamed, another sign that the glacier began receding a while ago.

While pondering the timing of the glaciers' demise, Fagre often asks why the ice is disappearing and why trees are growing in their paths.

"Trees are migrating to higher altitudes," he says, turning and stooping to pick up a cellophane wrapper from the trail. "It's warmer up here now. Would you ever have imagined a lowland fir invading the domain of a glacier? In mountain ranges all over the world, plants and wildlife are forced higher and higher by global warming. Alpine summits are a cul-de-sac; species are running out of room."

Like a geyser between eruptions, Fagre's passion bubbles over on the hour, like clockwork. I sympathize with his concern. The alpine landscape looks different from my memories of it, hiking here in 1976, when nearly forty glaciers reigned. I remember ice shrouding the mountains like a white powdered wig; now the hairline is receding. I ask him about the widening distance to the moraine, whether that is his best forensic clue.

The ecologist scans the rubble and ravine; it borders the glacier like a skirt. "A broad moraine like this may be old news," he says, "so our best visual gauge of what's happening today is the snow line." This rough line or contour traverses the glacier, showing when there is enough snow to compensate for what has melted. It works like this: In late summer, the visible snow line looks like a meandering hemline with white snow above, which is accumulating, and exposed gray ice below, which is melting. If the snow line is at least two-thirds down the glacier, the ice mass is considered healthy — it is growing or holding its own. Today, the demarcation is clearly up toward the headwall, only one-third down the slope. The rest is wasting away. The official field results: The glacier may be flatlining. In the months ahead I would learn Fagre had a barrage of tests and tools at the ready to profile a glacier. He keeps a diagnostic chart on each, their vital signs carefully listed.

Dan Fagre is a maverick at the U.S. Geological Survey, his employer at the West Glacier Field Station, where he directs the Program for Climate Change in Mountain Ecosystems and a crew of five. He abhors deskwork. Two young men and two women are with him today, presently climbing the last track to join their leader on the ice. Through recent years of a conservative government, he has maintained credibility (and kept above the fray) by undertaking good, unimpeachable science. In return, the Bush Administration has given him a free rein, except in one regard: he is restricted from advocating any specific climate-change policy. By law, he limits his public pronouncements to the causes and effects of global warming — the science. For him, specific remedies and policy initiatives are off-limits. Only political appointees in Washington, D.C., have been allowed to speak. Now, in August 2008, he is perhaps looking forward to the election. But he will not say.

Adjusting to his niche, Fagre has become a jack-of-all-trades in Montana's mountains. As coordinator of glacier-monitoring efforts in Glacier National Park, his activities range from computer modeling to GPS (Global Positioning System) measurements, usually atop crampons or cross-country skis. He is a legend to his crew, most of whom are half his age — he is fifty-six — and they hike and climb at a fast pace, often with Fagre in the lead. He is stocky and fit — built like a mountaineer and rugged looking. His boyish haircut makes him seem younger than his years. But, unusual for a scientist, he doesn't mask his youthful passion. "The loss of a glacier hits me hard," he says. "I like snow and ice. I'd rather be living in the Pleistocene."

The mission of Fagre's alpine program is to study the ecological and geological effects of the global warming trend as it manifests locally in the mountains of northwest Montana. The Park is a crucible, a proving ground for the rest of the alpine world. Global environmental problems often appear here first — the world is watching. Besides recording glacial melting, local monitoring includes reading avalanches, forest fires, stream temperatures (and volumes), and tree line changes, as conditions become more temperate at higher elevations. Not only trees and wildlife are moving uphill. Even coldwater fish are forced upstream as once-cool habitats begin to warm up. Of course, they can't swim much higher — the frigid stretches of streams peter out. They end up in fragmented pockets of cool water. Ecologically, they've been painted into a corner.

Fagre locks eyes with me and clicks a ski pole against his boot, like a spoon rapping a wineglass. He and I stand at the base of the glacier, each with a foot on the ice, the other anchored on rock. He has something to say. "We're not doing ice radar or stream transects today; our objective is strictly to get GPS positions for the glacier — to measure the acreage — by boat and land." That's why he has brought along two rubber rafts. Fagre gently taps the yellow inflatable on his uncomfortable-looking pack. The surfeit of straps on the frame looks like something from the Spanish Inquisition. Just then, one of his crew wanders next to us. Chris Miller carries the second raft and other gear. Fagre continues, "Even a major glacier like this is so small, relative to the resolution of satellite imagery, that satellite remote sensing is not accurate, so we employ aerial photography — and ground-truth anything we get from the air."

Miller says, "That's how I've worn the tread off my boots this summer — ground-truthing for the government. Hauling the gear. Checking every corner of the glacier. I'm a government mule. Lucky it's for a good cause." His boots are caked with snow. A healthy snowpack, after years of winter drought, means it is uncertain if the glacier will recede or grow this year, so Fagre and Miller are even more curious than usual. They plan on mapping the glacier's dimensions from GPS coordinates just to make sure they confirm or disprove the trend. The current hypothesis: extinction for the glacier within twenty-two years or less.

But exactly how much time is really left is uncertain. Grinnell, one of the five largest cirque (or bowl) glaciers in the Park, faces north and, compared to south-facing ice, is slower to melt. Still, it's been losing 2.5 acres annually — on average — over the past forty years. It's in critical condition.

Not all glaciers are equal — massive ones are termed "ice sheets," remnants are named "glacierets" — but all have certain aspects in common. Each glacier, by one common definition, is composed of ice — solid water formed from compacted snow — thick enough (over a hundred feet) for the mass to move forward and downward with gravity under its own weight. The compressed bottom layer is fluid, pliable, and oozes like Silly Putty. It may move inches or feet over the course of a year, but it is always advancing, like a shark. When a glacier is reduced to a size where it stops moving, it is essentially dead. At that point, Fagre cuts it from his viable list.

Grinnell Glacier's age is uncertain: it may date from the last full ice age — the Pleistocene, the time of the woolly mammoth, reaching its height eighteen thousand years ago — or it may be a product of the Little Ice Age, which ended in 1850, or somewhere halfway. From partial ice core samples, the best estimate is seven thousand years. Likely, there has been a cycle of glaciers occupying this amphitheater over the millennia, with dry, warm periods in between. Their size is a balance between growth (from snowfall) and summer melting (called "ablation"), essentially how the glacier advances and retreats. That balance reveals the double threat of climate change: It can affect precipitation as well as temperature. Snowfall has been light over the last few decades. Winter drought and summer warming work at both ends to cut glaciers to the quick.

Drought and melting have been brought on by local warming, reflecting a global trend over the past century. Average global temperatures have increased by 1.44 degrees F (0.8 degrees C) since 1900. (Locally, summer temperatures in the Park have nearly doubled that variation, thanks to its altitude, which nurtures cloud cover that traps heat, and its northern position, which places it in the path of warm air from the Pacific.) This timeline coincides with the overloading of greenhouse gases, from the burning of fossil fuels (oil, gas, coal), into the atmosphere. Named for their tendency to cloak the Earth, these gases allow sunlight through but repress the escape of heat from the earth's surface — like the windowpanes of a hothouse. Greenhouse gases, such as carbon dioxide from car exhaust and electric power plants, are expected to increase steadily, as population and industrialization grow. According to the United Nations, global temperatures may elevate as much as 7.2 degrees F (4 degrees C) by the end of the century. In terms of impact on the climate and weather, this is a huge amount. The warming trend in alpine and polar regions may accelerate even quicker, their temperatures climbing in part because of "positive feedback" loops, such as the tendency of dark open seas (adjacent to floating ice) and exposed mountain walls (next to snowpack) to absorb solar radiation, thus prompting more melting. Then, as more dark water or rock reaches the surface, it brings even more heating and loss of ice. Feedback loops are popping up all over. Consequently, weather patterns will certainly shift. Hurricanes, tornadoes, and typhoons will likely intensify in frequency and force. Rainfall and snowfall will lessen in some places, strengthen in others. In the wake of intense drought, agriculture is expected to suffer in many regions of the world.


(Continues...)

Excerpted from The Melting World by Christopher White. Copyright © 2013 Christopher White. Excerpted by permission of St. Martin's Press.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

Contents

Title Page,
Copyright Notice,
Dedication,
Author's Note,
Epigraph,
Map,
Introduction,
YEAR ONE: Into the Cirque,
YEARS TWO & THREE: Through the Looking Glass,
YEAR FOUR, WEEK ONE: The Falcon and the Falconer,
YEAR FOUR, WEEK TWO: The Cascade Effect,
YEAR FOUR, WEEK THREE: Fire and Ice,
YEAR FOUR, WEEK FOUR: Things Fall Apart,
YEAR FOUR, WEEK FIVE: A Thousand Words,
YEAR FIVE, EPILOGUE: The Widening Gyre,
Selected Bibliography,
Acknowledgments,
Photographs,
Also by Christopher White,
About the Author,
Copyright,

From the B&N Reads Blog

Customer Reviews