The Philosophy of Mathematics: Translated from Cours de Philosophie Positive by W. M. Gillespie
Written by the nineteenth-century French philosophical founder of positivism, this comprehensive map of mathematical science assigns to each part of the complex whole its true position and value. The two-part treatment begins with a general view of mathematical analysis and advances to algebra, continuing with an exploration of geometry's ancient and modern methods.
1100256963
The Philosophy of Mathematics: Translated from Cours de Philosophie Positive by W. M. Gillespie
Written by the nineteenth-century French philosophical founder of positivism, this comprehensive map of mathematical science assigns to each part of the complex whole its true position and value. The two-part treatment begins with a general view of mathematical analysis and advances to algebra, continuing with an exploration of geometry's ancient and modern methods.
39.99 In Stock
The Philosophy of Mathematics: Translated from Cours de Philosophie Positive by W. M. Gillespie

The Philosophy of Mathematics: Translated from Cours de Philosophie Positive by W. M. Gillespie

by Auguste Comte
The Philosophy of Mathematics: Translated from Cours de Philosophie Positive by W. M. Gillespie

The Philosophy of Mathematics: Translated from Cours de Philosophie Positive by W. M. Gillespie

by Auguste Comte

eBook

$39.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

Written by the nineteenth-century French philosophical founder of positivism, this comprehensive map of mathematical science assigns to each part of the complex whole its true position and value. The two-part treatment begins with a general view of mathematical analysis and advances to algebra, continuing with an exploration of geometry's ancient and modern methods.

Product Details

ISBN-13: 9780486155135
Publisher: Dover Publications
Publication date: 10/29/2013
Sold by: Barnes & Noble
Format: eBook
Pages: 272
File size: 944 KB

Read an Excerpt

The Philosophy of Mathematics


By AUGUSTE COMTE

Dover Publications, Inc.

Copyright © 2005 Dover Publications, Inc.
All rights reserved.
ISBN: 978-0-486-15513-5



CHAPTER 1

GENERAL VIEW OF MATHEMATICAL ANALYSIS.


IN the historical development of mathematical science since the time of Descartes, the advances of its abstract portion have always been determined by those of its concrete portion; but it is none the less necessary, in order to conceive the science in a manner truly logical, to consider the Calculus in all its principal branches before proceeding to the philosophical study of (geometry and Mechanics. Its analytical theories, more simple and more general than those of concrete mathematics, are in themselves essentially independent of the latter; while these, on the contrary, have, by their nature, a continual need of the former, without the aid of which they could make scarcely any progress. Although the principal conceptions of analysis retain at present some very perceptible traces of their geometrical or mechanical origin, they are now, however, mainly freed from that primitive character, which no longer manifests itself except in some secondary points; so that it is possible (especially since the labours of Lagrange) to present them in a dogmatic exposition, by a purely abstract method, in a single and continuous system. It is this which will be undertaken in the present and the five following chapters, limiting our investigations to the most general considerations upon each principal branch of the science of the calculus.

The definite object of our researches in concrete mathematics being the discovery of the equations which express the mathematical laws of the phenomenon under consideration, and these equations constituting the true starting point of the calculus, which has for its object to obtain from them the determination of certain quantities by means of others, I think it indispensable, before proceeding any farther, to go more deeply than has been customary into that fundamental idea of equation, the continual subject, either as end or as beginning, of all mathematical labours. Besides the advantage of circumscribing more definitely the true field of analysis, there will result from it the important consequence of tracing in a more exact manner the real line of demarcation between the concrete and the abstract part of mathematics, which will complete the general exposition of the fundamental division established in the introductory chapter.


THE TRUE IDEA OF AN EQUATION.

We usually form much too vague an idea of what an equation is, when we give that name to every kind of relation of equality between any two functions of the magnitudes which we are considering. For, though every equation is evidently a relation of equality, it is far from being true that, reciprocally, every relation of equality is a veritable equation, of the kind of those to which, by their natures, the methods of analysis are applicable.

This want of precision in the logical consideration of an idea which is so fundamental in mathematics, brings with it the serious inconvenience of rendering it almost impossible to explain, in general terms, the great and fundamental difficulty which we find in establishing the relation between the concrete and the abstract, and which stands out so prominently in each great mathematical question taken by itself. If the meaning of the word equation was truly as extended as we habitually suppose it to be in our definition of it, it is not apparent what great difficulty there could really be, in general, in establishing the equations of any problem whatsoever; for the whole would thus appear to consist in a simple question of form, which ought never even to exact any great intellectual efforts, seeing that we can hardly conceive of any precise relation which is not immediately a certain relation of equality, or which cannot be readily brought thereto by some very easy transformations.

Thus, when we admit every species of functions into the definition of equations, we do not at all account for the extreme difficulty which we almost always experience in putting a problem into an equation, and which so often may be compared to the efforts required by the analytical elaboration of the equation when once obtained. In a word, the ordinary abstract and general idea of an equation does not at all correspond to the real meaning which geometers attach to that expression in the actual development of the science. Here, then, is a logical fault, a defect of correlation, which it is very important to rectify.

Division of Functions into Abstract and Concrete. To succeed in doing so, I begin by distinguishing two sorts of functions, abstract or analytical functions, and concrete functions. The first alone can enter into veritable equations. We may, therefore, henceforth define every equation, in an exact and sufficiently profound manner, as a relation of equality between two abstract functions of the magnitudes under consideration. In order not to have to return again to this fundamental definition, I must add here, as an indispensable complement, without which the idea would not be sufficiently general, that these abstract functions may refer not only to the magnitudes which the problem presents of itself, but also to all the other auxiliary magnitudes which are connected with it, and which we will often be able to introduce, simply as a mathematical artifice, with the sole object of facilitating the discovery of the equations of the phenomena. I here anticipate summarily the result of a general discussion of the highest importance, which will be found at the end of this chapter. We will now return to the essential distinction of functions as abstract and concrete.

This distinction may be established in two ways, essentially different, but complementary of each other, à priori and à posteriori; that is to say, by characterizing in a general manner the peculiar nature of each species of functions, and then by making the actual enumeration of all the abstract functions at present known, at least so far as relates to the elements of which they are composed.

A priori, the functions which I call abstract are those which express a manner of dependence between magnitudes, which can be conceived between numbers alone, without there being need of indicating any phenomenon whatever in which it is realized. I name, on the other hand, concrete functions, those for which the mode of dependence expressed cannot be defined or conceived except by assigning a determinate case of physics, geometry, mechanics, &c., in which it actually exists.

Most functions in their origin, even those which are at present the most purely abstract, have begun by being concrete; so that it is easy to make the preceding distinction understood, by citing only the successive different points of view under which, in proportion as the science has become formed, geometers have considered the most simple analytical functions. I will indicate powers, for example, which have in general become abstract functions only since the labours of Vieta and Descartes. The functions x2, x3, which in our present analysis are so well conceived as simply abstract, were, for the geometers of antiquity, perfectly concrete functions, expressing the relation of the superficies of a square, or the volume of a cube to the length of their side. These had in their eyes such a character so exclusively, that it was only by means of the geometrical definitions that they discovered the elementary algebraic properties of these functions, relating to the decomposition of the variable into two parts, properties which were at that epoch only real theorems of geometry, to which a numerical meaning was not attached until long afterward.

I shall have occasion to cite presently, for. another reason, a new example, very suitable to make apparent the fundamental distinction which I have just exhibited; it is that of circular functions, both direct and inverse, which at the present time are still sometimes concrete, sometimes abstract, according to the point of view under which they are regarded.

A posteriori, the general character which renders a function abstract or concrete having been established, the question as to whether a certain determinate function is veritably abstract, and therefore susceptible of entering into true analytical equations, becomes a simple question of fact, inasmuch as we are going to enumerate all the functions of this species.

Enumeration of Abstract Functions. At first view this enumeration seems impossible, the distinct analytical functions being infinite in number. But when we divide them into simple and compound, the difficulty disappears; for, though the number of the different functions considered in mathematical analysis is really infinite, they are, on the contrary, even at the present day, composed of a very small number of elementary functions, which can be easily assigned, and which are evidently sufficient for deciding the abstract or concrete character of any given function; which will be of the one or the other nature, according as it shall be composed exclusively of these simple abstract functions, or as it shall include others.

We evidently have to consider, for this purpose, only the functions of a single variable, since those relative to several independent variables are constantly, by their nature, more or less compound.

Let x be the independent variable, y the correlative variable which depends upon it. The different simple modes of abstract dependence, which we can now conceive between y and x, are expressed by the ten following elementary formulas, in which each function is coupled with its inverse, that is, with that which would be obtained from the direct function by referring x to y, instead of referring y to x.

Such are the elements, very few in number, which directly compose all the abstract functions known at the present day. Few as they are, they are evidently sufficient to give rise to an infinite number of analytical combinations.

No rational consideration rigorously circumscribes, à priori, the preceding table, which is only the actual expression of the present state of the science. Our analytical elements are at the present day more numerous than they were for Descartes, and even for Newton and Leibnitz: it is only a century since the last two couples have been introduced into analysis by the labours of John Bernouilli and Euler. Doubtless new ones will be hereafter admitted; but, as I shall show towards the end of this chapter, we cannot hope that they will ever be greatly multiplied, their real augmentation giving rise to very great difficulties.

We can now form a definite, and, at the same time, sufficiently extended idea of what geometers understand by a veritable equation. This explanation is especially suited to make us understand how difficult it must be really to establish the equations of phenomena, since we have effectually succeeded in so doing only when we have been able to conceive the mathematical laws of these phenomena by the aid of functions entirely composed of only the mathematical elements which I have just enumerated. It is clear, in fact, that it is then only that the problem becomes truly abstract, and is reduced to a pure question of numbers, these functions being the only simple relations which we can conceive between numbers, considered by themselves. Up to this period of the solution, whatever the appearances may be, the question is still essentially concrete, and does not come within the domain of the calculus. Now the fundamental difficulty of this passage from the concrete to the abstract in general consists especially in the insufficiency of this very small number of analytical elements which we possess, and by means of which, nevertheless, in spite of the little real variety which they offer us, we must succeed in representing all the precise relations which all the different natural phenomena can manifest to us. Considering the infinite diversity which must necessarily exist in this respect in the external world, we easily understand how far below the true difficulty our conceptions must frequently be found, especially if we add that as these elements of our analysis have been in the first place furnished to us by the mathematical consideration of the simplest phenomena, we have, à priori, no rational guarantee of their necessary suitableness to represent the mathematical law of every other class of phenomena. I will explain presently the general artifice, so profoundly ingenious, by which the human mind has succeeded in diminishing, in a remarkable degree, this fundamental difficulty which is presented by the relation of the concrete to the abstract in mathematics, without, however, its having been necessary to multiply the number of these analytical elements.


THE TWO PRINCIPAL DIVISIONS OF THE CALCULUS.

The preceding explanations determine with precision the true object and the real field of abstract mathematics. I must now pass to the examination of its principal divisions, for thus far we have considered the calculus as a whole.

The first direct consideration to be presented on the composition of the science of the calculus consists in dividing it, in the first place, into two principal branches, to which, for want of more suitable denominations, I will give the names of Algebraic calculus, or Algebra, and of Arithmetical calculus, or Arithmetic; but with the caution to take these two expressions in their most extended logical acceptation, in the place of the by far too restricted meaning which is usually attached to them.

The complete solution of every question of the calculus, from the most elementary up to the most transcendental, is necessarily composed of two successive parts, whose nature is essentially distinct. In the first, the object is to transform the proposed equations, so as to make apparent the manner in which the unknown quantities are formed by the known ones : it is this which constitutes the algebraic question. In the second, our object is to find the values of the formulas thus obtained; that is, to determine directly the values of the numbers sought, which are already represented by certain explicit functions of given numbers : this is the arithmetical question. It is apparent that, in every solution which is truly rational, it necessarily follows the algebraical question, of which it forms the indispensable complement, since it is evidently necessary to know the mode of generation of the numbers sought for before determining their actual values for each particular case. Thus the stopping-place of the algebraic part of the solution becomes the starting point of the arithmetical part.

We thus see that the algebraic calculus and the arithmetical calculus differ essentially in their object. They differ no less in the point of view under which they regard quantities; which are considered in the first as to their relations, and in the second as to their values. The true spirit of the calculus, in general, requires this distinction to be maintained with the most severe exactitude, and the line of demarcation between the two periods of the solution to be rendered as clear and distinct as the proposed question permits. The attentive observation of this precept, which is too much neglected, may be of much assistance, in each particular question, in directing the efforts of our mind, at any moment of the solution, towards the real corresponding difficulty. In truth, the imperfection of the science of the calculus obliges us very often (as will be explained in the next chapter) to intermingle algebraic and arithmetical considerations in the solution of the same question. But, however impossible it may be to separate clearly the two parts of the labour, yet the preceding indications will always enable us to avoid confounding them.

In endeavouring to sum up as succinctly as possible the distinction just established, we see that ALGEBRA may be defined, in general, as having for its object the resolution of equations; taking this expression in its full logical meaning, which signifies the transformation of implicit functions into equivalent explicit ones. In the same way, ARITHMETIC may be defined as destined to the determination of the values of functions. Henceforth, therefore, we will briefly say that ALGEBRA is theCalculus of Functions, and ARITHMETIC the Calculus of Values.


(Continues...)

Excerpted from The Philosophy of Mathematics by AUGUSTE COMTE. Copyright © 2005 Dover Publications, Inc.. Excerpted by permission of Dover Publications, Inc..
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

Contents

Title Page,
Copyright Page,
PREFACE.,
INTRODUCTION. - GENERAL CONSIDERATIONS.,
BOOK I, - ANALYSIS.,
CHAPTER I. - GENERAL VIEW OF MATHEMATICAL ANALYSIS.,
CHAPTER II. - ORDINARY ANALYSIS, OR ALGEBRA.,
CHAPTER III. - TRANSCENDENTAL ANALYSIS:,
CHAPTER IV. - THE DIFFERENTIAL AND INTEGRAL CALCULUS.,
CHAPTER V. - THE CALCULUS OF VARIATIONS.,
CHAPTER VI. - THE CALCULUS OF FINITE DIFFERENCES.,
BOOK II, - GEOMETRY.,
CHAPTER I. - GENERAL VIEW OF GEOMETRY.,
CHAPTER II. - ANCIENT OR SYNTHETIC GEOMETRY.,
CHAPTER III. - MODERN OR ANALYTICAL GEOMETRY.,
DOVER PHOENIX EDITIONS,

From the B&N Reads Blog

Customer Reviews