The Science of Harry Potter: How Magic Really Works

( 12 )


Can Fluffy the three-headed dog be explained by advances in molecular biology? Could the discovery of cosmic "gravity-shielding effects" unlock the secret to the Nimbus 2000 broomstick's ability to fly? Is the griffin really none other than the dinosaur Protoceratops? Roger Highfield, author of the critically acclaimed The Physics of Christmas, explores the fascinating links between magic and science to reveal that much of what strikes us as supremely strange in the Potter books can actually be explained by the ...

See more details below
Paperback (Reprint)
$14.84 price
(Save 12%)$17.00 List Price

Pick Up In Store

Reserve and pick up in 60 minutes at your local store

Other sellers (Paperback)
  • All (90) from $1.99   
  • New (11) from $1.99   
  • Used (79) from $1.99   
The Science of Harry Potter: How Magic Really Works

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$13.99 price


Can Fluffy the three-headed dog be explained by advances in molecular biology? Could the discovery of cosmic "gravity-shielding effects" unlock the secret to the Nimbus 2000 broomstick's ability to fly? Is the griffin really none other than the dinosaur Protoceratops? Roger Highfield, author of the critically acclaimed The Physics of Christmas, explores the fascinating links between magic and science to reveal that much of what strikes us as supremely strange in the Potter books can actually be explained by the conjurings of the scientific mind. This is the perfect guide for parents who want to teach their children science through their favorite adventures as well as for the millions of adult fans of the series intrigued by its marvels and mysteries.

Read More Show Less

Editorial Reviews

From Barnes & Noble
Dr. Roger Highfield has written a book about the science of Harry Potter that should earn him an honorary degree from Hogwarts. The author of The Physics of Christmas romps through Harry's world, providing everything from a history of ancient cauldrons to a discourse on the relations of wise owls and wizards. We enjoyed especially Highfield's discussions of real-life potions and magicians' tricks.
From the Publisher
"Animated by Highfield's enthusiasm for the extraordinary, The Science of Harry Potter is an enjoyably indirect survey of modern science." (The New York Times Book Review)
Publishers Weekly
British science writer Highfield (The Private Lives of Albert Einstein) takes on J.K. Rowling's Harry Potter series "to show how many elements of her books can be found in and explained by modern science." The result is an intelligent though odd attempt to straddle the imaginative worlds of science and fiction. Using Harry's magical world to "help illuminate rather than undermine science," Highfield splits the book in two: the first half a "secret scientific study" of everything that goes on at Potter's Hogwarts school, the second half an endeavor to show the origins of the "magical thinking" found in the books, whether expressed in "myth, legend, witchcraft or monsters." This division is an obvious attempt to duplicate the method and the popularity of his Physics of Christmas. Here, however, as intriguing as the concept is, the author isn't quite able to engage or entertain as he explores the ways in which Harry's beloved game of Quidditch resembles the 16th-century Mesoamerican game Nahualtlachti or how, by using Aztec psychotropic mushrooms, Mexican peyote cactus and other types of mind-altering fungi, even Muggles can experience their own magic. While interesting, the book reads more like an obsessive Ph.D. dissertation that fails to satisfy either of its target audiences: the children who read the books or the parents who buy them and often read them themselves. (Oct.) Forecast: Sellers should note: this is not a simple effort to introduce basic science concepts to young Potter fans. Copyright 2002 Cahners Business Information.
An ALA Booklist Editors' Choice, this is an amazing collection of facts on a wide variety of subjects that explains how magic really works. Roger Highfield, science editor of The Daily Telegraph, contacted more than 100 scientists from around the world, then divided the resulting information into two parts-the "how to" issues and the origins of magical thinking. Part One covers such topics as time travel, antigravity, magnets and levitating frogs, wormholes, teleportation, hallucinogens, invisibility, clothes that clean themselves, game theory, the world of owls, and how to make giants like Hagrid. Part Two begins with the history of magic and deals with the tragic state of the Muggle mind, confused by fossils, superstitions, delusions, illusions, and hallucinations. Wizards and witches of history and the talents of stage magicians are exposed. Potions ancient and modern help Muggles. And Albus Dumbledore may be modeled on John Dee, the occultist and adviser to Queen Elizabeth I. The book contains references, a glossary worth reading, and an index. The science is daunting and detailed, appropriate for savvy older teens and adults. KLIATT Codes: SA-Recommended for senior high school students, advanced students, and adults. 2002, Penguin, 322p. notes. index., Ages 15 to adult.
— Janet Julian
Read More Show Less

Product Details

  • ISBN-13: 9780142003558
  • Publisher: Penguin Publishing Group
  • Publication date: 5/27/2003
  • Edition description: Reprint
  • Pages: 344
  • Sales rank: 411,732
  • Product dimensions: 5.04 (w) x 8.25 (h) x 0.58 (d)

Meet the Author

Dr. Roger Highfield is science editor of The Daily Telegraph, which has published several thousand of his articles since 1986. A regular broadcaster on the BBC and the winner of several journalism awards, Highfield is the author of The Physics of Christmas and coauthor of such highly acclaimed books as The Arrow of Time and The Private Lives of Albert Einstein.

Read More Show Less

Read an Excerpt

Broomsticks, Time Travel and Splinching

"The Bludgers are up!" yells the commentator. In the airborne stadium with golden goalposts, two teams of seven players zoom around on broomsticks, swooping and weaving as they dodge their opponents' missiles-Bludgers-while trying to score with the red Quaffle. The game of Quidditch enthralls the broomstick-riding Harry, who tries to catch the Golden Snitch and win the game for Gryffindor House.

The wizarding world's favorite form of transport, the broomstick, is one of its worst-kept secrets, for every Muggle knows that witches and wizards use them to get about. Even now, scientists and engineers are trying to figure out how they do so. The most prized of racing broomsticks, the Nimbus 2000 and the Firebolt, probably use extremely advanced technology to defy the tug of Earth's gravity, a technology that has massive commercial and scientific implications. Researchers from NASA would sell their grandmothers to obtain Harry's broomstick, not to mention Hover Charms, Mr. Weasley's enchanted turquoise Ford Anglia, the flying motorbike that Hagrid borrowed from Sirius Black, or the candles that hover in the Great Hall of Hogwarts, all of which suggest that witches and wizards must know how to turn gravity on and off at will.

Exotic materials that can produce antigravity could also pave the way to wormholes, hypothetical shortcuts between two widely separated points in space-time. You could, for example, step into one end of a wormhole and emerge from the other a million miles away, 10,000 years in the past. There are several episodes in the Harry Potter books where wizards travel through a shortcut to Platform Nine and 3/4, or to visit the Diagon Alley wizard shopping arcade. Maybe they made these quick trips by wriggling through wormholes.

Enchanted travel opportunities do not end there. Harry used Floo powder to flit about. Other objects and people can appear out of thin air, whether the Knight bus, the food that fills plates at mealtimes, or a wizard clutching an old boot. Such remarkable materializations could be due to exotic technology, perhaps similar to that used in Star Trek to beam members of the Enterprise down to the surface of alien planets. Today, the possibility of such extraordinary feats taking place can be glimpsed when properties of atoms have been shuffled around the laboratory by practitioners of a leading-edge field called quantum teleportation.

The Quest to Fly with Broomsticks

It is a dream that is as old as humanity: to step out into thin air and fly like a bird, to cast off the bonds of gravity, to soar free, zooming through the clouds with the wind rustling past our outstretched and rapidly flapping arms.

Why, then, can't we fly? The short answer is that we are not birds. The longer one is that the human body is unable to deliver the right combination of thrust and lift. The longest answer I intend to give is that we lack feathers to help generate lift and propulsion, efficient lung design, large enough hearts, hollow bones to reduce our weight, and adequate muscle power to generate a sufficient flap.

While we cannot fly unaided, a broomstick is not as preposterous a form of transport as it sounds. Even NASA has pronounced on broomstick propulsion: A considered overview of the various technologies on offer has been put together by Mark Millis, who has the impressive title of project manager for the Breakthrough Propulsion Physics Project at the NASA Glen Research Center in Cleveland, Ohio.

Millis began with the oldest technology, a balloon-assisted broomstick. This does not seem like a particularly promising contender for Harry's wooden steed. First, a blimplike construction would seem unlikely to achieve the Firebolt's quoted performance of zero to 150 mph in ten seconds. (That's fast, although a fraction of the performance of a 6,000-horsepower dragster, which can cover a quarter-mile from a standing start in less than five seconds to reach 320-plus mph.) Millis also points out that balloon-based vehicles would make easy targets for Bludgers.

How about an airplane-style broom? Intriguingly, this suggestion is more magical than it may at first seem. A century after the Wright brothers made their first flight, Jef Raskin, a former professor at the University of California at San Diego and the inventor of the Macintosh computer, says that the usual popular textbook explanations for what keeps aircraft aloft are wrong.

Aircraft fly because air travels faster over the top surface of each wing than underneath. A theory by Dutch-born Daniel Bernoulli established that this speed difference produces a drop in air pressure over the top of the wing, which generates lift. (You can demonstrate this effect at home by blowing between two dollar bills.) But there is a problem, says Raskin. "The naive explanation attributes the lift to the difference in length between the curved top of a wing and the flat bottom of the wing. If this were true, planes could not fly upside down, for then the curve would be on the bottom and the flat on the top." But planes can fly upside down, and not only do some wings have the same curve on top and bottom, but even flat-winged paper airplanes can take to the skies.

The key question remains: How do wings generate lift? Robert Bowles of University College London, a mathematician with expertise in aerodynamics, agrees with Raskin that lift occurs when the flow of air around a wing is turned downward. When flow is deflected in one direction, lift is generated in the opposite direction, according to Newton's third law of motion. However, for a wing, it is crucial to understand that the downward flow depends on air being both deflected by the underside of the wing and bent by the topside.

The latter is trickier to visualize. Because air is slightly viscous it tends to stick to the top of the wing and can generate whirling masses of air called vortices. You can see this effect by adding a dash of milk to black coffee and moving a spoon through it, revealing how movement through such a "sticky" fluid generates a coffee vortex. As vortices are shed by the top surface of a wing, the flow turns downward to generate an upward force on the wing.

With the right equipment, you could detect a force on your spoon as you move it through the coffee, says Bowles. This force-the same as the one that keeps a wing aloft-depends on the angle of attack and the shape of the spoon. Mathematical models show that even flat wings can fly if they have an angle of attack to deflect air downward. As for planes flying upside down, the lift can remain positive even if the angle of attack is negative, because of the shape-a stretched teardrop-of the wing.

Although this "airfoil theory" is now standard in books on mathematical fluid mechanics, some mysteries of flight remain. How to capture the essence of turbulence (when air flow is disorderly), in a computer or clever mathematical formula has in no way been mastered by even the best Muggle scientists. Turbulence is generated to some degree by all forms of flight through air. Next time you board an aircraft, just remember that a little magic helps to keep you aloft.

Wings mark a conventional solution to the broomstick problem, and one that would be a good way to build up frequent-flyer miles, though it may be easy to lose your luggage, remarked Millis, a not entirely serious answer. Save a mention of the Slytherin team whizzing through the air like jump jets, however the many references to swooping and soaring on brooms contain no suggestion of wings, engines, or any such equipment. Harry must sit on exotic technology.

How about a rocket-assisted broom? This is an entirely feasible solution, but a stick thus outfitted could be tricky to steer and, given the long robes that wizards wear, something of a fire hazard. Which brings us to the antigravity and warp-drive brooms, a more promising approach, and a technology in which NASA seems to be very interested. Although it does not use the terms "antigravity" or "warp drive," Millis acknowledges that NASA is investigating related research at the frontier of physics.

The Quest for Antigravity

Conventional attempts to fly have relied on generating another force to counter its tug and, so far, no one has ever found any way of "shielding" matter from its effects. That, of course, has not stopped people from trying to turn off the most familiar force in the Muggles' universe. One can imagine the excitement caused in 1992 when the Russian researcher Evgeny Podkletnov announced to the world in an paper in the obscure journal Physica C that he had shielded an area of space from gravity. The apparatus that accomplished this consisted of a cooled and magnetically suspended ring of superconducting ceramic material disk 145 millimeters in diameter and 6 millimeters thick. Podkletnov applied an alternating electric current to coils surrounding the disk to make it rotate and found that this setup reduced the weight of any object placed over it by up to 2 percent. He observed the antigravity effect with a wide range of materials, ranging from ceramics to wood. The faster the rotations, the greater the reduction in gravity's force.

With Petri Vuorinen of Tampere University, Finland, Podkletnov submitted a second paper in 1996 to Journal of Physics-D. This time, however, the paper's description of additional experiments was picked up by the media and he seems to have been accused of sorcery by his peers. Tampere University-whose Institute of Material Science was at the center of the controversy generated by the announcement-declared that it no longer had links with Podkletnov, and refused to comment on whether the antigravity device functioned or not. Vuorinen denied being involved in the project, the paper was not published, and the work was dismissed as fantasy.

One of the hallmarks of real science is the way that, even if great scientists like Newton and Einstein had never lived, others would have eventually made their discoveries. In the case of antigravity, another scientist, Ning Li, had been independently researching gravity modification at the University of Alabama in Huntsville, and had studied the possibility that superconductors might generate bizarre gravitational effects, as predicted by Einstein's theory of gravity (general relativity). In the mid 1990s she, too, seemed to be getting somewhere-fast-spinning charged atoms in her superconductor were producing a gravitational field-but then she dropped out of sight.

Inspired by Podkletnov's paper in Physica C, a number of scientific institutions decided to take a closer look. Ron Koczor and his colleagues at NASA's Marshall Space Flight Center in Huntsville, Alabama, had taken an earlier interest in Li's work but could not determine how best to test her ideas with experiments. Podkletnov's approach seemed to be a simpler way to do the same thing. But their first attempts to reproduce his gravity-defying experiments proved futile according to a 1997 paper by Koczor's team.

At the time of writing, Koczor was awaiting delivery of a replica of Podkletnov's apparatus, which NASA had commissioned with $600,000 from the company Superconductive Components of Columbus, Ohio. Aware of the skeptics, of which there are very many, Koczor stresses that it is important to keep an open mind until he has a chance to test the device. (He adds: "Please don't call it an antigravity machine. You don't know the level of heartburn and pain that would cause me.")

Other commercial organizations have stated that, though they doubt the effect is real, the implications of this research are too huge to ignore. If a souped-up version of this apparatus could be fitted on a spacecraft, rocket propulsion would be history: a nudge is all that would be required for lift-off. The same, of course, would go for a broomstick: one prod, and your toes would soon be skimming the ground.


One striking example of gravity defiance is found in an enchanting toy called the Levitron, which consists of a magnet, in the form of a spinning top, that can hover an inch or three above a repelling magnetic base. At first sight, the Levitron seems truly magical. We have known that such a device should not function since 1842, when Samuel Earnshaw of St. John's College, Cambridge, published a paper that showed that levitation should be impossible using stationary magnets. The American inventor Roy Harrigan was assured as much by Muggle wizards, who warned him that he was wasting his time by trying to defy Earnshaw's theorem. Fortunately he ignored them and, like a true magician, pulled the Levitron out of his hat two decades ago, and the toy was then developed by Bill Hones of the company Fascination Inc. As if to underline its magical ability, the toy's patents referred to how its stability depended on the way it spins like a top but missed one important scientific point. Although this explanation actually violates Earnshaw's theorem, the Levitron's ability to hover patently does not.

A convincing scientific account of how it works had to wait until a 1996 study by Sir Michael Berry. Working at the University of Bristol, Berry is one of the wizards of quantum mechanics, the most revolutionary scientific theory of the past century, which was developed by European physicists who realized that the previous theories of physics did not hold true for subatomic particles, such as electrons.

The "antigravity" force that repels the top from the base of the Levitron is magnetism. Think of the base magnet with its north pole pointing up, and the top as a magnet with its north pole pointing down. As anyone who has played around with magnets knows, there is repulsion between two north poles, which balances the downward tug of gravity and makes the Levitron float.

However, in order for the toy to function, the top has to spin; otherwise, the magnetic force would flip it over. Then its south pole would point downward, and the force from the base would be attractive-that is, in the same direction as gravity-and the top would fall. The tricky part for Berry was explaining how a slight horizontal or vertical movement of the Levitron produces a force pushing the top back toward the point about which it gently bobs and weaves. It is precisely because it wobbles (technically speaking, the top "precesses") that it does not violate Earnshaw's theorem. In recent decades, one of the building blocks of atoms, the neutrons, has been trapped using a similar effect, so the theory has implications far beyond magnetic toys. However, there are no references in Harry Potter to spinning broomsticks, so there must be another way to overcome Earnshaw.

Enter the curious case of the levitating frogs, which, once again, blurs the distinctions between science and magic. The feat was carried out by Andrey Geim while at the Nijmegen High Field Magnet Laboratory in Holland, working with Peter Main and Humberto Carmona. The team suspended a frog in midair without use of mirrors, strings, sleight of hand or any other trickery. They defeated the force of gravity with a balancing force of magnetism rather than attempting to turn gravity off at its source. "This is, in fact, as close as we can-probably ever-approach the science-fiction antigravity machine," they say.

The floating frog is impressive proof of a fact that most of us do not realize: it's not just metals that respond to magnetic fields. The team has repeated this uplifting feat with grasshoppers, fish, mice and plants. In fact, it is possible to levitate magnetically every living creature due to an omnipresent form of magnetism called diamagnetism.

This kind of levitation is not ruled out by Earnshaw's theorem unlike other types of magnetism: paramagnetism and ferromagnetism. Diamagnetism is a quantum phenomenon that cannot be explained by the classical physics of Earnshaw, and it turns out that everything from wood, grapes and water to pizza, frogs and even humans can be lofted by a magnet, providing it is strong enough.

All everyday materials are made of atoms, two hundred thousand million million of which would fit on the period at the end of this sentence. And all kinds of magnetism rest ultimately on the behavior of electrons in atoms. Traditionally, atoms have been described as miniature solar systems, in which negatively charged electrons fly around the positively charged atomic nucleus like tiny spinning planets. (Today, we think of electrons as a negatively charged mist, rather than as discrete particles.)

Because electrons are electrically charged, their motion can generate magnetic fields. In this way, they turn into magnets that can themselves be affected by magnetic fields. When a magnetic field of sufficient intensity distorts the electron orbits in the frog's atoms, they generate a tiny net electric current, which, like an electromagnet, generates an opposing magnetic field. Like opposing magnets, the repulsive force pushes the fields apart.

"There is a sense in which the Levitron and the frog are the same, since diamagnetism is microscopically the result of tiny rotating magnets-little versions of the Levitron's spinning top," says Michael Berry, who has worked with Andrey Geim, now in the University of Manchester, to extend his theory to show how levitating amphibians also defy Earnshaw.

When the little frog underwent this form of levitation it looked comfortable inside the magnet and, afterward, happily rejoined its fellow frogs in the laboratory's biology department. Geim's research team has been exposed to high fields, as has one of his American colleagues who spent several hours inside a magnet (reclining, not levitating), and none of them has suffered any ill effects. Geim has even levitated a hamster, called Tisha, who went on to live to a healthy old age of three. (Remarkably, they coauthored a levitation paper in the journal Physica B by A. K. Geim and H.A.M.S. ter Tisha.) Because there are no signs that these strong static fields have any health effects, Harry could easily be carried aloft this way. All it requires is a big enough magnet. The frog was lifted two meters up a cylinder by a magnetic field 100,000 times stronger than Earth's natural magnetic field and between 10 and 100 times stronger than refrigerator magnets.

The natural pose when riding a broomstick-leaning forward, so the body is more horizontal than vertical-is in fact the best posture for magnetic levitation. The catch is that you would not really need a broomstick at all to exploit diamagnetism, and you would have to be inside a vast magnet several meters across that could generate many times the field currently used by the magnetic resonance imaging scanners that are commonly used in medicine.

"I would enthusiastically volunteer to be the first levitatee," says Michael Berry. "To be levitated in this way could be an interesting experience...more like the weightlessness experienced by astronauts in space. But there is a difference: the diamagnetism of the body is not quite uniform-tissues, bone, blood and so on have different magnetic properties-so we would feel slight pullings and pushes over the body. If the magnetic force on flesh is greater than that on bone, it would be as though we were held up by our flesh, with our bones hanging down-a bizarre reversal of the usual situation, and possibly the basis for an (expensive) type of face-lift."

Intriguingly, one of the Potter books contains a fleeting reference to how there is too much magic in the air around Hogwarts for electronics to work-a tantalizing hint that the school is bathed in an electromagnetic field powerful enough not only to disrupt sensitive microchips but also to lift a person into the sky. However, so strong a field would also exert an extraordinary tug on anything ferromagnetic, such as iron, cobalt and nickel, making its presence obvious and something of a nuisance to the inhabitants. Kennilworthy Whisp also points out that no spell yet devised allows wizards to fly unaided in human form. We may have to look elsewhere to find the secret of the Firebolt.

Cosmic Antigravity

In other fields of physics, antigravity is beginning to be taken seriously. Strangely enough, Einstein himself formulated the idea, but then abandoned it. Today, however, there are hints that his first instincts were correct. There is growing evidence from our studies of the heavens to suggest that mysterious "dark energy" may be shoving huge collections of stars-galaxies-away from one another, which sounds as ominous as anything out of the pages of the Harry Potter books.

Einstein's 1915 theory of gravity came about after he realized that a person falling from a sufficient height would not feel his own weight, not until he hit the ground, that is. The force of acceleration matches that of gravity so precisely that the faller's sensation of weight is canceled out. Thus gravity and acceleration are equivalent. Einstein recognized that his 1905 special theory of relativity had to be generalized so that it could describe varying accelerations found in real-life situations, when gravitational fields are not uniform.

General relativity replaced the previous way of describing gravity devised by Sir Isaac Newton. Einstein did not view gravity as a force, as did Sir Isaac, but the curvature of a four-dimensional mixture of space and time called space-time. While special relativity deals only with flat space-time, general relativity deals with space-time that has been warped by gravity. For example, space-time is warped into a shape like the inside of a bell around Earth so that falling objects are toppling into the bell and orbiting satellites and spacemen are rolling around within it.

Einstein's theory suggested the universe was dynamic: It would either expand, then collapse under the relentless pull of gravity, or it would continue to expand forever. However, like many scientists of his time, he assumed the universe was not contracting or expanding, but unchanging. To make his theory predict a static universe he added a fudge factor, something he called the "cosmological constant," representing antigravity, though he had no idea if it was real. Einstein said later that his introduction of a cosmological constant was the biggest blunder of his career. He had missed the chance to predict what the American astronomer Edwin Hubble discovered in 1929: the universe is expanding. However, recent experiments suggest that Einstein's original "repulsive suggestion" of antigravity was on the right track and that the expansion of the universe recently began speeding up, as if something were pushing it: the antigravitational force of dark energy seems to be loosening gravity's grip. Dark energy gets stronger as the universe expands. That means our cosmos may fly apart faster as time goes by, ending with a whimper, not a bang.

The source of this repulsive gravity is unknown. It may be something entirely new, and these first observations may mark the start of efforts to grapple with a puzzle as mysterious as the pitch-black monolith that stars in Stanley Kuplbrick's masterpiece 2001: A Space Odyssey.

Over huge distances this force becomes something to reckon with, and is strong enough to dent the effects of gravity. However, there is skepticism that it will be possible to harness this force to lift a broomstick. "The only more or less accepted fact about antigravity (and there is not universal agreement) is the evidence for the acceleration of the expansion of the universe, which points to a 'cosmological constant' or 'energy field' (normally called quintessence) which produces antigravity," says Miguel Alcubierre of the Universidad Nacional Autonoma de México. "The effects, however, are extremely small."

Wriggling Through Wormholes

If we could find materials that have enormous non-gravitational tension or pull, another form of transport might become possible. (Although a rubber band shows this kind of behavior, as do electric fields, their pulls are just not strong enough.) In that case we might be able to create wormholes, which are the cosmic equivalent of their counterpart in an apple. But rather than providing a route between core and peel, cosmic wormholes provide shortcuts between two distinct points in space-time, separated by five miles or five million, five years or five million years. These could explain some of Harry's more spectacular journeys such as the one he took through Tom Riddle's diary. The description of his falling into one page, June thirteenth, sounds very much as though he was passing through a wormhole portal. Wormholes may likewise snake to the sorcery shops of Diagon Alley or from King's Cross Station to Platform Nine and 3/4.

To understand wormholes, we must turn to Einstein's theory of gravity as warped space-time. Then we have to look at what happens as a result of the extreme space-time distortions caused by the biggest gravitational tug of all, that occurring around black holes, where gravity is so intense than even light cannot escape. While working with Nathan Rosen in Princeton in the 1930s Einstein had discovered that the equations of relativity show that a black hole forms a bridge between two places/times (regions of space-time). Such an "Einstein-Rosen bridge"-which we now call a wormhole-could lead to the possibility of movement through vast distances across the universe, or even time travel.

But it seems unlikely that wizards use black holes for transportation. For one thing, a wormhole itself cannot even exist for long enough for light to cross from one part of the universe to the other. In effect, gravity quickly slams this portal shut. This proved to be a headache when the late astronomer Carl Sagan decided to write a science-fiction novel, Contact. Sagan wanted to fix this problem so that his characters could travel from Earth to a point near the star Vega. In 1985 he approached Kip Thorne at Caltech for help, who in turn enlisted the aid of his students.

They tried to work out what kinds of matter and energy would be needed for the feat of interstellar travel. In 1987 they reported that for a wormhole to be held open, its throat would have to be threaded by some form of exotic matter, or some form of field, that would exert negative pressure and have antigravity associated with it.

Thorne recently said that researchers were still studying whether it was possible to get enough exotic matter in the mouth of a wormhole to maintain its gape. But the bottom line, at present at least, is that it looks as though it will be a difficult feat. "I regarded it as fairly negative a few years ago and it has become more negative," declared Thorne. However, he admits that his skepticism that wormholes will ever be established to be feasible for travel is not the final word on the matter.

That is just as well for Harry Potter. His experiences do seem to mirror those described in Contact. Sagan describes traveling through a wormhole as racing down a long dark tunnel. After a pinch of Floo powder was thrown into the burning flames of a fireplace, Harry described how he felt as if he were being sucked down a giant plug hole. As he spun around, blurred fireplaces flashed past him while bacon sandwiches churned within him. Similarly, Sagan referred to the texture of the tunnel walls as they flashed past, from which it was possible to sense the incredible speed, one at which even a collision with a sparrow would produce a devastating explosion.

Read More Show Less

Table of Contents


Part I

Introduction: The Science of Magic

1. Broomsticks, Time Travel and Splinching
2. How to Play Quidditch without Leaving the Ground
3. The Invisibility Cloak, Sorting Hat, and Other Spellbinding Apparel 4. The Mathematics of Evil
5. Owls, Snails and Skrewts
6. Magizoology
7. Bertie Bott's Every Flavor beans

Part II


8. Stars, Mystic Chickens and Superstitious Pigeons
9. The Greatest Wizard
10. There be Dragons. Really.
11. The Potions Master
12. The Origins of Witchcraft
13. The Quest for the Philosopher's Stone
14. Belief, Superstition and Magic
15. The Magic of Science

Glossary of Muggle Science, Potter Magic, Oddments snd Tweaks


Read More Show Less

Customer Reviews

Average Rating 3.5
( 12 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing all of 12 Customer Reviews
  • Posted January 3, 2009

    more from this reviewer

    I Also Recommend:

    Fun Stuff! (for nerds, anyway...)

    This is a really fun read for fans of Harry Potter who are also science nerds. To me, it's amazing that someone actually has scientifically understandable theories for the magic in the books! Sometimes the science gets pretty advanced (this coming from someone who reads physics textbooks for fun), but if you take your time, it's well worth the read. Downside? It was written before Order of the Phoenix so it only covers the first four books. But it's so cool. Seriously. (If you're a nerd like me.)

    3 out of 3 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted May 17, 2010

    Not for Kids but Great Adult Content

    This is a great book for adults!!! I really enjoyed it, and it can serve as a basis to find out about numerous topics related to the science of magic. The topics are very extensive, but it does not go into very much depth. However, if one finds something of interest, there is enough information to explore the information further. It would be helpful to provide more references to the information discussed. I would have enjoyed more depth and less breadth, but this is just a personal preference.

    One important warning. This book is not appropriate for young children. There is a discussion of sexual practices of witches which is not for kids, and a discussion of various commonly obtained substances that can be used as hallucinogens. There is not any warning about the fact that these substances might cause brain damage or death and so may serve as a misguided how to. I would recommend that parents read this book prior to allowing their children to read it so that they can judge the appropriateness for their child. It would be easy to simply remove one or more sections of the book. I hate to cut up books, but I think that it would be worth it in this case since very bright kids would enjoy the rest of the text.

    2 out of 2 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted April 26, 2009

    A book that tries to prove the science behind harry potter with no actual proof

    This book is ridiculous! Every time he tries to explain how this works, he doesn't come up with a real answer. So and so could be an explanation, but there is no real explanation. J.K. Rowling probably didn't intend for her books to be dissected and explained by science. It's called fantasy for a reason. I advise anyone not to waste their time reading this book unless they like paradox and confusion.

    2 out of 4 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted September 21, 2008


    Magic is not science, it is not even relevant to science, therefore, magic cannot be explained by science. As a loyal fan of the Harry Potter series, I find this a tremendous insult to J.K. Rowling, and the series.

    2 out of 5 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted June 5, 2012

    Reading rebal


    1 out of 3 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted April 10, 2006


    Wow! I have always loved Harry Potter, along with science. For all of those people out there thinking: Oh no, not science trust me, this one is different. THis book combines fact and fiction (fiction? hmm...maybe not...this book got me thinking)and is very interesting. My friends read it, and they all hate science, and they thought, 'Wow! maybe science isn't that bad if it has to do with Harry Potter!' Soo, go ahead, I strongly advise you read this!!

    1 out of 1 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted April 27, 2015

    To number 3

    Wrong. Science can tell you about alot of this are i cant wait to see the book.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted December 27, 2014

    Random Pants!!!!!!!!!!!!!!!!!!!!! :D

    Yo! What the?!?. You're not!!!!!!!!!!!!!!!!!!!!!!!!!!!!

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted June 4, 2014

    No. Just no.

    Its not science its magic you squib!!! Stop putting education in my fandoms!!!!

    0 out of 1 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted February 13, 2014

    What the?!?

    How come Im the only one from 2014?!?

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted May 5, 2007

    A reviewer

    do not even waste your time buying this book. It is the most boring book. I love science and this book made my interest in it shatter. It was so boring I had to force myself to read it only because I love harry potter so much. Nothing makes sense and it is all rubbish. Magic and science cannot be put together. It is its own thing based on sorcery and stuff like that so stop writing about all this and wasting people's time!!!

    0 out of 2 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted January 17, 2011

    No text was provided for this review.

Sort by: Showing all of 12 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)