The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R
This advanced machine learning book highlights many algorithms from a geometric perspective and introduces tools in network science, metric geometry, and topological data analysis through practical application.

Whether you’re a mathematician, seasoned data scientist, or marketing professional, you’ll find The Shape of Data to be the perfect introduction to the critical interplay between the geometry of data structures and machine learning.

This book’s extensive collection of case studies (drawn from medicine, education, sociology, linguistics, and more) and gentle explanations of the math behind dozens of algorithms provide a comprehensive yet accessible look at how geometry shapes the algorithms that drive data analysis.

In addition to gaining a deeper understanding of how to implement geometry-based algorithms with code, you’ll explore:

  • Supervised and unsupervised learning algorithms and their application to network data analysis
  • The way distance metrics and dimensionality reduction impact machine learning
  • How to visualize, embed, and analyze survey and text data with topology-based algorithms
  • New approaches to computational solutions, including distributed computing and quantum algorithms
1143556768
The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R
This advanced machine learning book highlights many algorithms from a geometric perspective and introduces tools in network science, metric geometry, and topological data analysis through practical application.

Whether you’re a mathematician, seasoned data scientist, or marketing professional, you’ll find The Shape of Data to be the perfect introduction to the critical interplay between the geometry of data structures and machine learning.

This book’s extensive collection of case studies (drawn from medicine, education, sociology, linguistics, and more) and gentle explanations of the math behind dozens of algorithms provide a comprehensive yet accessible look at how geometry shapes the algorithms that drive data analysis.

In addition to gaining a deeper understanding of how to implement geometry-based algorithms with code, you’ll explore:

  • Supervised and unsupervised learning algorithms and their application to network data analysis
  • The way distance metrics and dimensionality reduction impact machine learning
  • How to visualize, embed, and analyze survey and text data with topology-based algorithms
  • New approaches to computational solutions, including distributed computing and quantum algorithms
23.99 In Stock
The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R

The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R

The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R

The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R

eBookDigital original (Digital original)

$23.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This advanced machine learning book highlights many algorithms from a geometric perspective and introduces tools in network science, metric geometry, and topological data analysis through practical application.

Whether you’re a mathematician, seasoned data scientist, or marketing professional, you’ll find The Shape of Data to be the perfect introduction to the critical interplay between the geometry of data structures and machine learning.

This book’s extensive collection of case studies (drawn from medicine, education, sociology, linguistics, and more) and gentle explanations of the math behind dozens of algorithms provide a comprehensive yet accessible look at how geometry shapes the algorithms that drive data analysis.

In addition to gaining a deeper understanding of how to implement geometry-based algorithms with code, you’ll explore:

  • Supervised and unsupervised learning algorithms and their application to network data analysis
  • The way distance metrics and dimensionality reduction impact machine learning
  • How to visualize, embed, and analyze survey and text data with topology-based algorithms
  • New approaches to computational solutions, including distributed computing and quantum algorithms

Product Details

ISBN-13: 9781718503090
Publisher: No Starch Press
Publication date: 09/12/2023
Sold by: Penguin Random House Publisher Services
Format: eBook
Pages: 264
File size: 9 MB

About the Author

Colleen M. Farrelly is a senior data scientist whose academic and industry research has focused on topological data analysis, quantum machine learning, geometry-based machine learning, network science, hierarchical modeling, and natural language processing. Since graduating from the University of Miami with an MS in biostatistics, Colleen has worked as a data scientist in a vari- ety of industries, including healthcare, consumer packaged goods, biotech, nuclear engineering, marketing, and education. Colleen often speaks at tech conferences, including PyData, SAS Global, WiDS, Data Science Africa, and DataScience SALON. When not working, Colleen can be found writing haibun/haiga or swimming.

Yaé Ulrich Gaba completed his doctoral studies at the University of Cape Town (UCT, South Africa) with a specialization in topology and is currently a research associate at Quantum Leap Africa (QLA, Rwanda). His research interests are computational geometry, applied algebraic topology (topologi- cal data analysis), and geometric machine learning (graph and point-cloud representation learning). His current focus lies in geometric methods in data analysis, and his work seeks to develop effective and theoretically justified algorithms for data and shape analysis using geometric and topological ideas and methods.

Table of Contents

Introduction
Chapter 1: The Geometric Structure of Data
Chapter 2: The Geometric Structure of Networks
Chapter 3: Network Analysis
Chapter 4: Network Filtration
Chapter 5: Geometry in Data Science
Chapter 6: Newer Applications of Geometry in Machine Learning
Chapter 7: Tools for Topological Data Analysis
Chapter 8: Homotopy Algorithms
Chapter 9: Final Project: Analyzing Text Data
Chapter 10: Multicore and Quantum Computing
From the B&N Reads Blog

Customer Reviews