The Volume of Vector Fields on Riemannian Manifolds: Main Results and Open Problems
This book focuses on the study of the volume of vector fields on Riemannian manifolds. Providing a thorough overview of research on vector fields defining minimal submanifolds, and on the existence and characterization of volume minimizers, it includes proofs of the most significant results obtained since the subject’s introduction in 1986. Aiming to inspire further research, it also highlights a selection of intriguing open problems, and exhibits some previously unpublished results. The presentation is direct and deviates substantially from the usual approaches found in the literature, requiring a significant revision of definitions, statements, and proofs.

A wide range of topics is covered, including: a discussion on the conditions for a vector field on a Riemannian manifold to determine a minimal submanifold within its tangent bundle with the Sasaki metric; numerous examples of minimal vector fields (including those of constant length on punctured spheres); athorough analysis of Hopf vector fields on odd-dimensional spheres and their quotients; and a description of volume-minimizing vector fields of constant length on spherical space forms of dimension three.

Each chapter concludes with an up-to-date survey which offers supplementary information and provides valuable insights into the material, enhancing the reader's understanding of the subject. Requiring a solid understanding of the fundamental concepts of Riemannian geometry, the book will be useful for researchers and PhD students with an interest in geometric analysis.

1143568633
The Volume of Vector Fields on Riemannian Manifolds: Main Results and Open Problems
This book focuses on the study of the volume of vector fields on Riemannian manifolds. Providing a thorough overview of research on vector fields defining minimal submanifolds, and on the existence and characterization of volume minimizers, it includes proofs of the most significant results obtained since the subject’s introduction in 1986. Aiming to inspire further research, it also highlights a selection of intriguing open problems, and exhibits some previously unpublished results. The presentation is direct and deviates substantially from the usual approaches found in the literature, requiring a significant revision of definitions, statements, and proofs.

A wide range of topics is covered, including: a discussion on the conditions for a vector field on a Riemannian manifold to determine a minimal submanifold within its tangent bundle with the Sasaki metric; numerous examples of minimal vector fields (including those of constant length on punctured spheres); athorough analysis of Hopf vector fields on odd-dimensional spheres and their quotients; and a description of volume-minimizing vector fields of constant length on spherical space forms of dimension three.

Each chapter concludes with an up-to-date survey which offers supplementary information and provides valuable insights into the material, enhancing the reader's understanding of the subject. Requiring a solid understanding of the fundamental concepts of Riemannian geometry, the book will be useful for researchers and PhD students with an interest in geometric analysis.

59.99 In Stock
The Volume of Vector Fields on Riemannian Manifolds: Main Results and Open Problems

The Volume of Vector Fields on Riemannian Manifolds: Main Results and Open Problems

by Olga Gil-Medrano
The Volume of Vector Fields on Riemannian Manifolds: Main Results and Open Problems

The Volume of Vector Fields on Riemannian Manifolds: Main Results and Open Problems

by Olga Gil-Medrano

Paperback(1st ed. 2023)

$59.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book focuses on the study of the volume of vector fields on Riemannian manifolds. Providing a thorough overview of research on vector fields defining minimal submanifolds, and on the existence and characterization of volume minimizers, it includes proofs of the most significant results obtained since the subject’s introduction in 1986. Aiming to inspire further research, it also highlights a selection of intriguing open problems, and exhibits some previously unpublished results. The presentation is direct and deviates substantially from the usual approaches found in the literature, requiring a significant revision of definitions, statements, and proofs.

A wide range of topics is covered, including: a discussion on the conditions for a vector field on a Riemannian manifold to determine a minimal submanifold within its tangent bundle with the Sasaki metric; numerous examples of minimal vector fields (including those of constant length on punctured spheres); athorough analysis of Hopf vector fields on odd-dimensional spheres and their quotients; and a description of volume-minimizing vector fields of constant length on spherical space forms of dimension three.

Each chapter concludes with an up-to-date survey which offers supplementary information and provides valuable insights into the material, enhancing the reader's understanding of the subject. Requiring a solid understanding of the fundamental concepts of Riemannian geometry, the book will be useful for researchers and PhD students with an interest in geometric analysis.


Product Details

ISBN-13: 9783031368561
Publisher: Springer Nature Switzerland
Publication date: 08/01/2023
Series: Lecture Notes in Mathematics , #2336
Edition description: 1st ed. 2023
Pages: 126
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Olga Gil-Medrano (1956, Spain) is a retired Full Professor at the University of Valencia, Spain. A leading specialist in the study of vector field volumes on Riemannian manifolds, her research also includes other topics of geometric analysis, such as the geometrical theory of foliations, the Yamabe problem, the geometry of spaces of metrics and other sections of tensor bundles, and variational problems on these spaces. She received the Medal of the Royal Spanish Mathematical Society (RSME) in 2021.

Table of Contents

- 1. Introduction. - 2. Minimal Sections of Tensor Bundles. - 3. Minimal Vector Fields of Constant Length on the Odd-Dimensional Spheres. - 4. Vector Fields of Constant Length of Minimum Volume on the Odd-Dimensional Spherical Space Forms. - 5. Vector Fields of Constant Length on Punctured Spheres.
From the B&N Reads Blog

Customer Reviews