This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne’s rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff’s classical theory on analytic difference equations on the other.
1136506012
Theory of Hypergeometric Functions
This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne’s rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff’s classical theory on analytic difference equations on the other.
99.99
In Stock
5
1

Theory of Hypergeometric Functions
320
Theory of Hypergeometric Functions
320
99.99
In Stock
Product Details
ISBN-13: | 9784431540878 |
---|---|
Publisher: | Springer Japan |
Publication date: | 07/14/2013 |
Series: | Springer Monographs in Mathematics |
Edition description: | 2011 |
Pages: | 320 |
Product dimensions: | 6.10(w) x 9.25(h) x 0.03(d) |
From the B&N Reads Blog