Theory of Machines and Mechanisms / Edition 4

Hardcover (Print)
Rent
Rent from BN.com
$25.98
(Save 82%)
Est. Return Date: 06/16/2014
Buy Used
Buy Used from BN.com
$96.53
(Save 34%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $84.03
Usually ships in 1-2 business days
(Save 43%)
Other sellers (Hardcover)
  • All (8) from $84.03   
  • New (6) from $141.56   
  • Used (2) from $84.03   

Overview

Theory of Machines and Mechanisms provides a text for the complete study of displacements, velocities, accelerations, and static and dynamic forces required for the proper design of mechanical linkages, cams, and geared systems. The authors present the background, notation, and nomenclature essential for students to understand the various independent technical approaches that exist in the field of mechanisms, kinematics, and dynamics.

Now fully revised in its fourth edition, this text is ideal for senior undergraduate or graduate students in mechanical engineering who are taking a course in kinematics and/or machine dynamics.

Read More Show Less

Product Details

  • ISBN-13: 9780195371239
  • Publisher: Oxford University Press, USA
  • Publication date: 2/26/2010
  • Edition description: New Edition
  • Edition number: 4
  • Pages: 928
  • Sales rank: 535,332
  • Product dimensions: 7.40 (w) x 9.10 (h) x 1.60 (d)

Meet the Author

John J. Uicker, Jr., is Professor Emeritus of Mechanical Engineering at the University of Wisconsin-Madison.

Gordon R. Pennock is Associate Professor of Mechanical Engineering at Purdue University.

The late Joseph E. Shigley was Professor Emeritus of Mechanical Engineering at the University of Michigan.

Read More Show Less

Table of Contents

CONTENTS
Preface
About the Authors

Part 1 Kinematics and Mechanisms
1 The World of Mechanisms
1.1 Introduction
1.2 Analysis and Synthesis
1.3 The Science of Mechanics
1.4 Terminology, Definitions, and Assumptions
1.5 Planar, Spherical, and Spatial Mechanisms
1.6 Mobility
1.7 Classification of Mechanisms
1.8 Kinematic Inversion
1.9 Grashof's Law
1.10 Mechanical Advantage
Problems

2 Position and Displacement
2.1 Locus of a Moving Point
2.2 Position of a Point
2.3 Position Difference Between Two Points
2.4 Apparent Position of a Point
2.5 Absolute Position of a Point
2.6 The Loop-Closure Equation
2.7 Graphic Position Analysis
2.8 Algebraic Position Analysis
2.9 Complex-Algebra Solutions of Planar Vector Equations
2.10 Complex Polar Algebra
2.11 The Chace Solutions to Planar Vector Equations
2.12 Position Analysis Techniques
2.13 Coupler-Curve Generation
2.14 Displacement of a Moving Point
2.15 Displacement Difference Between Two Points
2.16 Rotation and Translation
2.17 Apparent Displacement
2.18 Absolute Displacement
2.19 Apparent Angular Displacement
Problems

3 Velocity
3.1 Definition of Velocity
3.2 Rotation of a Rigid Body
3.3 Velocity Difference Between Points of a Rigid Body
3.4 Graphic Methods; Velocity Polygons
3.5 Apparent Velocity of a Point in a Moving Coordinate System
3.6 Apparent Angular Velocity
3.7 Direct Contact and Rolling Contact
3.8 Systematic Strategy for Velocity Analysis
3.9 Analytic Methods
3.10 Complex-Algebra Methods
3.11 The Vector Method
3.12 The Method of Kinematic Coefficients
3.13 Instantaneous Center of Velocity
3.14 The Aronhold-Kennedy Theorem of Three Centers
3.15 Locating Instant Centers of Velocity
3.16 Velocity Analysis Using Instant Centers
3.17 The Angular Velocity Ratio Theorem
3.18 Relationships Between First-Order Kinematic Coefficients and Instant Centers
3.19 Freudenstein's Theorem
3.20 Indices of Merit; Mechanical Advantage
3.21 Centrodes
Problems

4 Acceleration
4.1 Definition of Acceleration
4.2 Angular Acceleration
4.3 Acceleration Difference Between Points of a Rigid Body
4.4 Acceleration Polygons
4.5 Apparent Acceleration of a Point in a Moving Coordinate System
4.6 Apparent Angular Acceleration
4.7 Direct Contact and Rolling Contact
4.8 Systematic Strategy for Acceleration Analysis
4.9 Analytic Methods
4.10 Complex-Algebra Methods
4.11 The Chace Solutions
4.12 The Method of Kinematic Coefficients
4.13 The Euler-Savary Equation
4.14 The Bobillier Constructions
4.15 The Instant Center of Acceleration
4.16 The Bresse Circle (or de La Hire Circle)
4.17 Radius of Curvature of Point Trajectory Using Kinematic Coefficients
4.18 The Cubic of Stationary Curvature
Problems

5 Multi-Degree-of-Freedom Planar Linkages
5.1 Introduction
5.2 Position Analysis; Algebraic Solution
5.3 Graphic Methods; Velocity Polygons
5.4 Instant Centers of Velocity
5.5 First-Order Kinematic Coefficients
5.6 The Method of Superposition
5.7 Graphic Method; Acceleration Polygons
5.8 Second-Order Kinematic Coefficients
5.9 Path Curvature of a Coupler Point
5.10 The Finite Difference Method
Problems

Part 2 Design of Mechanisms

6 Cam Design
6.1 Introduction
6.2 Classification of Cams and Followers
6.3 Displacement Diagrams
6.4 Graphical Layout of Cam Profiles
6.5 Kinematic Coefficients of the Follower Motion
6.6 High-Speed Cams
6.7 Standard Cam Motions
6.8 Matching Derivatives of Displacement Diagrams
6.9 Plate Cam with Reciprocating Flat-Face Follower
6.10 Plate Cam with Reciprocating Roller Follower
Problems

7 Spur Gears
7.1 Terminology and Definitions
7.2 Fundamental Law of Toothed Gearing
7.3 Involute Properties
7.4 Interchangeable Gears; AGMA Standards
7.5 Fundamentals of Gear-Tooth Action
7.6 The Manufacture of Gear Teeth
7.7 Interference and Undercutting
7.8 Contact Ratio
7.9 Varying the Center Distance
7.10 Involutometry
7.11 Nonstandard Gear Teeth
Problems

8 Helical Gears, Bevel Gears, Worms and Worm Gears
8.1 Parallel-Axis Helical Gears
8.2 Helical Gear Tooth Relations
8.3 Helical Gear Tooth Proportions
8.4 Contact of Helical Gear Teeth
8.5 Replacing Spur Gears with Helical Gears
8.6 Herringbone Gears
8.7 Crossed-Axis Helical Gears
8.8 Straight-Tooth Bevel Gears
8.9 Tooth Proportions for Bevel Gears
8.10 Crown and Face Gears
8.11 Spiral Bevel Gears
8.12 Hypoid Gears
8.13 Worms and Worm Gears
Problems

9 Mechanism Trains
9.1 Parallel-Axis Gear Trains
9.2 Examples of Gear Trains
9.3 Determining Tooth Numbers
9.4 Epicyclic Gear Trains
9.5 Bevel Gear Epicyclic Trains
9.6 Analysis of Epicyclic Gear Trains by Formula
9.7 Tabular Analysis of Epicyclic Gear Trains
9.8 Summers and Differentials
9.9 All Wheel Drive Train
Problems

10 Synthesis of Linkages
10.1 Type, Number, and Dimensional Synthesis
10.2 Function Generation, Path Generation, and Body Guidance
10.3 Two Finitely Separated Positions of a Rigid Body (N = 2)
10.4 Three Finitely Separated Positions of a Rigid Body (N = 3)
10.5 Four Finitely Separated Positions of a Rigid Body (N = 4)
10.6 Five Finitely Separated Positions of a Rigid Body (N = 5)
10.7 Precision Positions; Structural Error; Chebychev Spacing
10.8 The Overlay Method
10.9 Coupler-Curve Synthesis
10.10 Cognate Linkages; The Roberts-Chebychev Theorem
10.11 Freudenstein's Equation
10.12 Analytic Synthesis Using Complex Algebra
10.13 Synthesis of Dwell Mechanisms
10.14 Intermittent Rotary Motion
Problems

11 Spatial Mechanisms
11.1 Introduction
11.2 Exceptions to the Mobility of Mechanisms
11.3 The Spatial Position-Analysis Problem
11.4 Spatial Velocity and Acceleration Analyses
11.5 Euler Angles
11.6 The Denavit-Hartenberg Parameters
11.7 Transformation-Matrix Position Analysis
11.8 Matrix Velocity and Acceleration Analyses
11.9 Generalized Mechanism Analysis Computer Programs
Problems

12 Robotics
12.1 Introduction
12.2 Topological Arrangements of Robotic Arms
12.3 Forward Kinematics
12.4 Inverse Position Analysis
12.5 Inverse Velocity and Acceleration Analyses
12.6 Robot Actuator Force Analysis
Problems

Part 3 Dynamics of Machines

13 Static Force Analysis
13.1 Introduction
13.2 Newton's Laws
13.3 Systems of Units
13.4 Applied and Constraint Forces
13.5 Free-Body Diagrams
13.6 Conditions for Equilibrium
13.7 Two- and Three-Force Members
13.8 Four-Force Members
13.9 Friction-Force Models
13.10 Static Force Analysis with Friction
13.11 Spur- and Helical-Gear Force Analysis
13.12 Straight-Tooth-Bevel-Gear Force Analysis
13.13 The Method of Virtual Work
13.14 Euler Column Formula
13.15 The Critical Unit Load
13.16 Critical Unit Load and the Slenderness Ratio
13.17 The Johnson Parabolic Equation
Problems

14 Dynamic Force Analysis
14.1 Introduction
14.2 Centroid and Center of Mass
14.3 Mass Moments and Products of Inertia
14.4 Inertia Forces and D'Alembert's Principle
14.5 The Principle of Superposition
14.6 Planar Rotation about a Fixed Center
14.7 Shaking Forces and Moments
14.8 Complex Algebra Approach
14.9 Equation of Motion From Power Equation
14.10 Measuring Mass Moment of Inertia
14.11 Transformation of Inertia Axes
14.12 Euler's Equations of Motion
14.13 Impulse and Momentum
14.14 Angular Impulse and Angular Momentum
Problems

15 Vibration Analysis
15.1 Differential Equations of Motion
15.2 A Vertical Model
15.3 Solution of the Differential Equation
15.4 Step Input Forcing
15.5 Phase-Plane Representation
15.6 Phase-Plane Analysis
15.7 Transient Disturbances
15.8 Free Vibration with Viscous Damping
15.9 Damping Obtained by Experiment
15.10 Phase-Plane Representation of Damped Vibration
15.11 Response to Periodic Forcing
15.12 Harmonic Forcing
15.13 Forcing Caused by Unbalance
15.14 Relative Motion
15.15 Isolation
15.16 Rayleigh's Method
15.17 First and Second Critical Speeds of a Shaft
15.18 Torsional Systems
Problems

16 Dynamics of Reciprocating Engines
16.1 Engine Types
16.2 Indicator Diagrams
16.3 Dynamic Analysis-General
16.4 Gas Forces
16.5 Equivalent Masses
16.6 Inertia Forces
16.7 Bearing Loads in a Single-Cylinder Engine
16.8 Crankshaft Torque
16.9 Shaking Forces of Engines
16.10 Computation Hints
Problems
17 Balancing
17.1 Static Unbalance
17.2 Equations of Motion
17.3 Static Balancing Machines
17.4 Dynamic Unbalance
17.5 Analysis of Unbalance
17.6 Dynamic Balancing
17.7 Balancing Machines
17.8 Field Balancing with a Programmable Calculator
17.9 Balancing a Single-Cylinder Engine
17.10 Balancing Multi-Cylinder Engines
17.11 Analytical Technique for Balancing Multi-Cylinder Engines
17.12 Balancing Linkages
17.13 Balancing of Machines
Problems

18 Cam Dynamics
18.1 Rigid- and Elastic-Body Cam Systems
18.2 Analysis of an Eccentric Cam
18.3 Effect of Sliding Friction
18.4 Analysis of Disk Cam with Reciprocating Roller Follower
18.5 Analysis of Elastic Cam Systems
18.6 Unbalance, Spring Surge, and Windup
Problems

19 Flywheels, Governors, and Gyroscopes
19.1 Dynamic Theory of Flywheels
19.2 Integration Technique
19.3 Multi-Cylinder Engine Torque Summation
19.4 Classification of Governors
19.5 Centrifugal Governors
19.6 Inertia Governors
19.7 Mechanical Control Systems
19.8 Standard Input Functions
19.9 Solution of Linear Differential Equations
19.10 Analysis of Proportional-Error Feedback Systems
19.11 Introduction to Gyroscopes
19.12 The Motion of a Gyroscope
19.13 Steady or Regular Precession
19.14 Forced Precession
Problems

APPENDIXES
Appendix A: Tables
Table 1 Standard SI Prefixes
Table 2 Conversion from US Customary Units to SI Units
Table 3 Conversion from SI Units to US Customary Units
Table 4 Properties of Areas
Table 5 Mass Moments of Inertia
Table 6 Involute Function
Appendix B: Answers to Selected Problems
Index

Read More Show Less

Customer Reviews

Average Rating 2
( 1 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(1)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
  • Posted May 7, 2010

    ñoñk

    ñkñk

    Was this review helpful? Yes  No   Report this review
Sort by: Showing 1 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)