Theory of Plates

Theory of Plates

by Author Unknown, Unknown
     
 

ISBN-10: 0444825703

ISBN-13: 9780444825704

Pub. Date: 08/05/1997

Publisher: Elsevier Science

The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any a priori assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional

…  See more details below

Overview

The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any a priori assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in H1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established.

In the nonlinear case, again after ad hoc scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von Kármán equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied.

Read More

Product Details

ISBN-13:
9780444825704
Publisher:
Elsevier Science
Publication date:
08/05/1997
Series:
Studies in Mathematics and its Applications Series
Pages:
564
Product dimensions:
1.31(w) x 6.14(h) x 9.21(d)

Table of Contents

Part A. Linear Plate Theory. 1. Linearly elastic plates. 2. Junctions in linearly elastic multi-structures. 3. Linearly elastic shallow shells in Cartesian coordinates. Part B. Nonlinear Plate Theory. 4. Nonlinearly elastic plates. 5. The von Kármán equations.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >