Theory of Stochastic Canonical Equations: Volumes I and II / Edition 1

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $137.21
Usually ships in 1-2 business days
(Save 27%)
Other sellers (Hardcover)
  • All (3) from $137.21   
  • New (2) from $137.21   
  • Used (1) from $233.25   
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any coupons and promotions
Seller since 2007

Feedback rating:



New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

Brand New Item

Ships from: Dover, NJ

Usually ships in 1-2 business days

  • Standard, 48 States
Seller since 2007

Feedback rating:


Condition: New

Ships from: Avenel, NJ

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
Page 1 of 1
Showing All
Sort by


Theory of Shastic Canonical Equations collects the major results of thirty years of the author's work in the creation of the theory of shastic canonical equations. It is the first book to completely explore this theory and to provide the necessary tools for dealing with these equations. Included are limit phenomena of sequences of random matrices and the asymptotic properties of the eigenvalues of such matrices. The book is especially interesting since it gives readers a chance to study proofs written by the mathematician who discovered them.
All fifty-nine canonical equations are derived and explored along with their applications in such diverse fields as probability and statistics, economics and finance, statistical physics, quantum mechanics, control theory, cryptography, and communications networks. Some of these equations were first published in Russian in 1988 in the book Spectral Theory of Random Matrices, published by Nauka Science, Moscow.
An understanding of the structure of random eigenvalues and eigenvectors is central to random matrices and their applications. Random matrix analysis uses a broad spectrum of other parts of mathematics, linear algebra, geometry, analysis, statistical physics, combinatories, and so forth. In return, random matrix theory is one of the chief tools of modern statistics, to the extent that at times the interface between matrix analysis and statistics is notably blurred.
Volume I of Theory of Shastic Canonical Equations discusses the key canonical equations in advanced random matrix analysis. Volume II turns its attention to a broad discussion of some concrete examples of matrices. It contains in-depth discussion of modern, highly-specialized topics in matrix analysis, such as unitary random matrices and Jacoby random matrices.
The book is intended for a variety of readers: students, engineers, statisticians, economists and others.

Read More Show Less

Product Details

Meet the Author

Vyacheslav L. Girko is Professor of Mathematics in the Department of Applied Statistics at the National University of Kiev and the University of Kiev Mohyla Academy. He is also affiliated with the Institute of Mathematics, Ukrainian Academy of Sciences. His research interests include multivariate statistical analysis, discriminant analysis, experiment planning, identification and control of complex systems, statistical methods in physics, noise filtration, matrix analysis, and shastic optimization. He has published widely in the areas of multidimensional statistical analysis and theory of random matrices.

Read More Show Less

Table of Contents

List of basic notations and assumptions. How the shastic canonical equation was found. 1. Canonical equation K1. 2. Canonical equation K2· Necessary and sufficient modified Lindeberg's condition. The Wigner and Cubic laws. 3. Regularized shastic canonical equation K3 for symmetric random matrices with infinitely small entries. 4. Shastic canonical equation K4 for symmetric random matrices with infinitely small entries. Necessary and sufficient conditions for the convergence of normalized spectral functions. 5. Canonical equation K5 for symmetric random matrices with infinitely small entries. 6. Canonical equation K6 for symmetric random matrices with identically distributed entries. 7. Canonical equation K7 for Gram random matrices. 8. Canonical equation K8. 9. Canonical equation K9 for random matrices whose entries have identical variances. 10. Canonical equation K10· Necessary and sufficient modified Lindeberg condition. 11. Canonical equation K11· Limit theorem for normalized spectral functions of empirical covariance matrices under the modified Lindeberg condition. 12. Canonical Equation K12 for random Gram matrices with infinitely small entries. 13. Canonical Equation K13 for random Gram matrices with infinitely small entries. 14. The method of random determinants for estimating the permanents of matrices and the canonical equation K14 for random Gram matrices. 15. Canonical EquationK15 for random Gram matrices with identically distributed entries. 16. Canonical Equation K16 for sample covariance matrices. 17. Canonical Equation K17 for identically distributed independent vector observations and the G2-estimators of the real Stieltjes transforms of the normalized spectral functions of the covariance matrices. 18. Canonical equation K18 for the special structure of vector observations. 19. Canonical equation K19. 20. Canonical equation K20· Strong law for normalized spectral functions of nonselfadjoint random matrices with independent row vectors. Simple rigorous proof of the strong Circular law. 21. Canonical equation K21 for random matrices with independent pairs of entries with zero expectations. Circular and Elliptic laws. 22. Canonical equation K22 for random matrices with independent pairs of entries. 23. Canonical equation K23 for random matrices with independent pairs of entries with different variances and equal covariances. 24. Canonical equation K24 for random G-matrices with infinitesimally small random entries. 25. Canonical equation K25 for random G-matrices. Strong V-law. 26. Class of canonical V-equation K26 for a single matrix and a product of two matrices. The V-density of eigenvalues of random matrices such that the variances of their entries form a doubly shastic matrix. 27. Canonical equation K27 for normalized spectral functions of random symmetric block matrices.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)