Thinking Data Science: A Data Science Practitioner's Guide

This definitive guide to Machine Learning projects answers the problems an aspiring or experienced data scientist frequently has: Confused on what technology to use for your ML development? Should I use GOFAI, ANN/DNN or Transfer Learning? Can I rely on AutoML for model development? What if the client provides me Gig and Terabytes of data for developing analytic models? How do I handle high-frequency dynamic datasets? This book provides the practitioner with a consolidation of the entire data science process in a single “Cheat Sheet”.

The challenge for a data scientist is to extract meaningful information from huge datasets that will help to create better strategies for businesses. Many Machine Learning algorithms and Neural Networks are designed to do analytics on such datasets. For a data scientist, it is a daunting decision as to which algorithm to use for a given dataset. Although there is no single answer to this question, a systematic approach to problem solving is necessary. This book describes the various ML algorithms conceptually and defines/discusses a process in the selection of ML/DL models. The consolidation of available algorithms and techniques for designing efficient ML models is the key aspect of this book. Thinking Data Science will help practising data scientists, academicians, researchers, and students who want to build ML models using the appropriate algorithms and architectures, whether the data be small or big.

 

1142119877
Thinking Data Science: A Data Science Practitioner's Guide

This definitive guide to Machine Learning projects answers the problems an aspiring or experienced data scientist frequently has: Confused on what technology to use for your ML development? Should I use GOFAI, ANN/DNN or Transfer Learning? Can I rely on AutoML for model development? What if the client provides me Gig and Terabytes of data for developing analytic models? How do I handle high-frequency dynamic datasets? This book provides the practitioner with a consolidation of the entire data science process in a single “Cheat Sheet”.

The challenge for a data scientist is to extract meaningful information from huge datasets that will help to create better strategies for businesses. Many Machine Learning algorithms and Neural Networks are designed to do analytics on such datasets. For a data scientist, it is a daunting decision as to which algorithm to use for a given dataset. Although there is no single answer to this question, a systematic approach to problem solving is necessary. This book describes the various ML algorithms conceptually and defines/discusses a process in the selection of ML/DL models. The consolidation of available algorithms and techniques for designing efficient ML models is the key aspect of this book. Thinking Data Science will help practising data scientists, academicians, researchers, and students who want to build ML models using the appropriate algorithms and architectures, whether the data be small or big.

 

69.99 In Stock
Thinking Data Science: A Data Science Practitioner's Guide

Thinking Data Science: A Data Science Practitioner's Guide

by Poornachandra Sarang
Thinking Data Science: A Data Science Practitioner's Guide

Thinking Data Science: A Data Science Practitioner's Guide

by Poornachandra Sarang

eBook2023 (2023)

$69.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This definitive guide to Machine Learning projects answers the problems an aspiring or experienced data scientist frequently has: Confused on what technology to use for your ML development? Should I use GOFAI, ANN/DNN or Transfer Learning? Can I rely on AutoML for model development? What if the client provides me Gig and Terabytes of data for developing analytic models? How do I handle high-frequency dynamic datasets? This book provides the practitioner with a consolidation of the entire data science process in a single “Cheat Sheet”.

The challenge for a data scientist is to extract meaningful information from huge datasets that will help to create better strategies for businesses. Many Machine Learning algorithms and Neural Networks are designed to do analytics on such datasets. For a data scientist, it is a daunting decision as to which algorithm to use for a given dataset. Although there is no single answer to this question, a systematic approach to problem solving is necessary. This book describes the various ML algorithms conceptually and defines/discusses a process in the selection of ML/DL models. The consolidation of available algorithms and techniques for designing efficient ML models is the key aspect of this book. Thinking Data Science will help practising data scientists, academicians, researchers, and students who want to build ML models using the appropriate algorithms and architectures, whether the data be small or big.

 


Product Details

ISBN-13: 9783031023637
Publisher: Springer-Verlag New York, LLC
Publication date: 03/01/2023
Series: The Springer Series in Applied Machine Learning
Sold by: Barnes & Noble
Format: eBook
File size: 70 MB
Note: This product may take a few minutes to download.

About the Author

Poornachandra Sarang, in his IT career spanning four decades, has been consulting large IT organizations on the design and architecture of systems using state-of-the-art technologies. He has authored several books covering a wide range of emerging technologies. Dr. Sarang is a Ph.D. advisor for Computer Science and Engineering and is on the thesis advisory committee for aspiring doctoral candidates. He has designed and delivered courses/curricula for universities at the postgraduate level, including courses and workshops on emerging technologies for industry. He is a known face at technical and research conferences delivering both keynote and technical talks.

Table of Contents

Chapter. 1. Data Science Process.- Chapter. 2. Dimensionality Reduction - Creating Manageable Training Datasets.- Chapter. 3. Classical Algorithms - Over-view.- Chapter. 4. Regression Analysis.- Chapter. 5. Decision Tree.- Chapter. 6. Ensemble - Bagging and Boosting.- Chapter. 7. K-Nearest Neighbors.- Chapter. 8. Naive Bayes.- Chapter. 9. Support Vector Machines: A supervised learning algorithm for Classification and Regression.- Chapter. 10. Clustering Overview.- Chapter. 11. Centroid-based Clustering.- Chapter. 12. Connectivity-based Clustering.- Chapter. 13. Gaussian Mixture Model.- Chapter. 14. Density-based.- Chapter. 15.- BIRCH.- Chapter. 16. CLARANS.- Chapter. 17. Affinity Propagation Clustering.- Chapter. 18. STING.- Chapter. 19. CLIQUE.- Chapter. 20. Artificial Neural Networks.- Chapter. 21. ANN-based Applications.- Chapter. 22. Automated Tools.- Chapter. 23. DataScientist’s Ultimate Workflow.
From the B&N Reads Blog

Customer Reviews