Third Culture: Beyond the Scientific Revolution
Thirty-five years ago, C. P. Snow, in a now famous essay, wrote about the polarization of the "two cultures" — literary intellectuals on the one hand, and scientists on the other. Although he hoped for the emergence of a "third culture" that would bridge the gap, it is only recently that science has changed the intellectual landscape.
Brockman's thesis that science is emerging as the intellectual center of our society is brought to life vividly in The Third Culture, which weaves together the voices of some of today's most influential scientific figures, including:
Stephen Jay Gould and Richard Dawkins on the implications of evolution Steven Pinker, Marvin Minsky, Daniel C. Dennett, and Roger Penrose on how the mind works
Murray Gell-Mann and Stuart Kauffman on the new sciences of complexity
The Third Culture is an honest picture of science in action. It is at once stimulating, challenging, and riveting.
1111415354
Third Culture: Beyond the Scientific Revolution
Thirty-five years ago, C. P. Snow, in a now famous essay, wrote about the polarization of the "two cultures" — literary intellectuals on the one hand, and scientists on the other. Although he hoped for the emergence of a "third culture" that would bridge the gap, it is only recently that science has changed the intellectual landscape.
Brockman's thesis that science is emerging as the intellectual center of our society is brought to life vividly in The Third Culture, which weaves together the voices of some of today's most influential scientific figures, including:
Stephen Jay Gould and Richard Dawkins on the implications of evolution Steven Pinker, Marvin Minsky, Daniel C. Dennett, and Roger Penrose on how the mind works
Murray Gell-Mann and Stuart Kauffman on the new sciences of complexity
The Third Culture is an honest picture of science in action. It is at once stimulating, challenging, and riveting.
26.95 In Stock
Third Culture: Beyond the Scientific Revolution

Third Culture: Beyond the Scientific Revolution

by John Brockman
Third Culture: Beyond the Scientific Revolution

Third Culture: Beyond the Scientific Revolution

by John Brockman

Paperback

$26.95 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Thirty-five years ago, C. P. Snow, in a now famous essay, wrote about the polarization of the "two cultures" — literary intellectuals on the one hand, and scientists on the other. Although he hoped for the emergence of a "third culture" that would bridge the gap, it is only recently that science has changed the intellectual landscape.
Brockman's thesis that science is emerging as the intellectual center of our society is brought to life vividly in The Third Culture, which weaves together the voices of some of today's most influential scientific figures, including:
Stephen Jay Gould and Richard Dawkins on the implications of evolution Steven Pinker, Marvin Minsky, Daniel C. Dennett, and Roger Penrose on how the mind works
Murray Gell-Mann and Stuart Kauffman on the new sciences of complexity
The Third Culture is an honest picture of science in action. It is at once stimulating, challenging, and riveting.

Product Details

ISBN-13: 9780684823447
Publisher: Touchstone
Publication date: 05/07/1996
Pages: 416
Sales rank: 673,032
Product dimensions: 5.50(w) x 8.50(h) x 1.00(d)

About the Author

John Brockman is a literary agent and author specializing in scientific literature. He established the Edge Foundation, an organization that brings together leading edge thinkers across a broad range of scientific and technical fields.

Read an Excerpt

Third Culture


By John Brockman

Touchstone Books

Copyright © 1996 John Brockman
All right reserved.

ISBN: 0684823446

Chapter 1

GEORGE C. WILLIAMS
"A Package of Information"

Niles Eldredge: I remember the English evolutionary geneticist John Maynard Smith remarking to me that he was astonished to find out that George Williams wasn't in our National Academy. Williams finally got elected in 1993. When I visited him in Stony Brook in the mid-1980s, he told me he was having a hard time getting grant support for his research, and I couldn't believe that. The two thoughts converged, because George really is the most important thinker in evolutionary biology in the United States since the 1959 Darwin centennial. It's astonishing that he hasn't gotten more credit and acclaim. He's a shy guy, but a very nice guy, and a very deep and a very careful thinker. I admire him tremendously, even though we've been arguing back and forth for years now.

George C. Williams is an evolutionary biologist; professor emeritus of ecology and evolution at the State University of New York at Stony Brook; author of Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought (1966), Sex and Evolution (1975), Natural Selection: Domains, Levels, and Challenges (1992), and coauthor (with Randolph Nesse, M.D.) of Why We Get Sick (1995).

George C. Williams: Evolution, in the sense of long-term change in a sexually reproducing population, depends on the relative rates of survival of competing genes. Given that organisms may find themselves in an environment where there are close genealogical relatives, it follows that an organism is expected to react to cues of kinship in a certain way, so as to discriminate among the individuals it encounters on the basis of kinship, and be more benign and cooperative toward closer kin than more distant kin or nonrelatives.

My interest in evolution started in the summer of 1947, when I spent six weeks in the Painted Desert with a paleontologist named Sam Welles, who had a group of students there, officially in a summer course, but we spent most of the time swinging picks and shovels, digging fossils, as part of Welles' research project. He was a specialist in Triassic amphibians. Evenings were spent sitting around the campfire talking about things like evolution. For the first time in my life, people -- real biologists, real scholars -- were willing to sit and listen to my opinions. I was twenty-one years old. I certainly became interested in many aspects of evolution then, and shortly after that I signed up at the University of California at Berkeley for a course in evolution with Ledyard Stebbins, who at the time, and for quite a while thereafter, was the world's primary expert in evolution with respect to things botanical. Stebbins' course introduced me to Theodosius Dobzhansky's Genetics and The Origin of Species. Stebbins was great, but Dobzhansky's book was what got me interested in natural selection as a process.

At the University of Chicago, my job was strictly teaching. I was in their early-entrant undergraduate program -- taught freshmen and sophomores biology. They had a great-books approach. We read Darwin, Mendel, and others. Also I attended seminars by people such as Alfred Emerson, the termite specialist and recognized authority on things evolutionary. I found his ideas absolutely unacceptable. That motivated me to do something. If it was biology Emerson was discussing. I would be better off selling insurance.

I remember especially his lecture on the role of death in evolution. He was all in favor of death, and said that the reason we grow old and die is to make room for successors, so that they can have a chance. This seemed so totally impossible, given that evolution proceeds by natural selection. There was absolutely no logical way you could reconcile his ideas with Darwinism, even though he claimed to be a Darwinist.

This initiated my first theoretical obsession: the evolution of senescence -- the decline in adaptive performance with age. You can't run as fast at sixty as you could at thirty. On the way home that evening, talking about the problem with my wife, I independently came up with an idea that Peter Medawar is chiefly responsible for and published in 1952, although he may have published something that foreshadowed it in the 1940s -- and that is that the effectiveness of selection in maintaining adaptation is essentially the product of reproductive value and survival.

The survival factor is easier to appreciate. If you're more likely to be alive at thirty than at sixty, then selection will be more effective at maintaining adaptation at thirty than at sixty. At an age you'd be extremely unlikely to survive to, such as one hundred years old, adaptation would be a lost cause, and selection wouldn't be concerned with it.

As the effectiveness of selection declines, the effectiveness of its products declines. This explains the rising mortality rate that comes with age. It seemed to me at the time, and still does, that this is an inevitable conclusion, arising from just the simple fact of mortality. If there's any possibility of dying, at any age, then you're less likely to be alive at a later age than you are at an earlier age.

Another one of Alfred Emerson's ideas was that evolution is much more concerned with cooperation than with competition. It seemed to me to be very much the other way around, and that there was something very special about the social insects which accounted for their extreme cooperativeness. That special thing was their kinship -- high levels of kinship within the colony. This was the focus of a theoretical paper I published in 1957. It was a model of natural selection between families; now I think that's a silly way to do it, but at the time I wasn't smart enough to think of the kin-selection idea, which was some years later worked out by William D. Hamilton. In extreme models, this kind of selection can lead to things like forgoing reproduction, if in so doing you can, for example, more than double the reproduction of a full sib. The full sib is half as good as you are genetically -- that is, from the standpoint of getting your genes into future generations. In the social insects, of course, sisters may have a three-quarter relationship, because if they share a father then all the genes they get from the father are exactly the same.

These early experiences kindled an interest that has never gone away, and resulted in Adaptation and Natural Selection, my first book-length publication on this and related matters. By then I had worked on the problem of senescence and on cooperation between relatives, but I had a long list of other problems that interested me.

At that time, group selection was not explicit. V.C. Wynne-Edwards' big book on group selection -- Animal Dispersion in Relation to Social Behaviour -- came out in 1962, but I discovered it only after I was largely finished with Adaptation and Natural Selection. I submitted the manuscript in late 1963, and it referred to Wynne-Edwards' work, but I brought it in as a late revision of the manuscript.

There was some group-selection modeling prior to that, and explicit use of group-selection ideas by Alfred Emerson and A.H. Sturtevant, in a paper published in 1938. In 1945, Sewall Wright presented a group-selection model, in a book review of George Simpson's Tempo and Mode in Evolution. But the group-selection model wasn't easy to find if you didn't know about it already. Mostly, the group-selection idea was necessary to the way people were thinking about adaptation, although -- and I find this extremely strange -- they didn't realize it. They kept talking about things being for the good of the species. If it's for the good of something, and it's to arise by natural selection, it has to be produced by the natural selection of those somethings. In other words, one species survives as another one goes extinct. The basis of Wynne-Edwards' work on group selection was that you can't have things that work for the good of the group unless you have selection at the level of groups. What he was doing was looking for selection at the level of local breeding populations, and whether they could be called separate species wasn't particularly relevant.

To most people's satisfaction, Wynne-Edwards has been proved wrong. Not that there's no selection at levels higher than the individual or the family, but simply that his particular formulation isn't likely to be a very strong force in evolution. It's now generally conceded that the phenomena he was explaining by this mode of thought are much better explained by other processes: by selection at lower levels, selection among individuals.

For instance, any reproductive restraint -- anytime it looks as if individuals aren't reproducing at the maximum possible rate -- is explainable simply on the basis of an individual optimal-resource-allocation model. You don't kill yourself trying to do something today if working at it a little bit more easily will enable you to try again tomorrow. Maybe you don't do it at all today, if conditions will be much better tomorrow. Thin kind of thinking explains the fact, for instance, that birds do not necessarily lay as many eggs in a breeding season as they demonstrably might. The allocation of their resources will be much more effective for reproduction with a lower-level expenditure on eggs, which will enable them later to spend more on feeding the young and later still, next year,having another breeding season.

There's a great conceptual deficiency in my earlier work, one that I shared with just about everybody else who was working at the time. I failed to realize what a tremendous problem the existence and prevalence of sexual reproduction is. I got interested in that in the early seventies, and I published a book in 1975 titled Sex and Evolution. There are a lot of complications that I didn't appreciate at the time, but John Maynard Smith and Bill Hamilton and many others have advanced our understanding tremendously in the last twenty years.

Richard Dawkins went in the right direction when he made the distinction between replicators and vehicles. David Hull's substitution of the term "interactor" for "vehicle" is a good idea, but that's a minor terminological matter. Dawkins didn't go nearly far enough in making that distinction, because he defines a replicator in a way that makes it a physical entity duplicating itself in a reproductive process. This is fine, but the important distinction lies at a still more basic level. He was misled by the fact that genes are always identified with DNA.

Evolutionary biologists have failed to realize that they work with two more or less incommensurable domains: that of information and that of matter. I address this problem in my 1992 book, Natural Selection: Domains, Levels, and Challenges. These two domains will never be brought together in any kind of the sense usually implied by the term "reductionism." You can speak of galaxies and particles of dust in the same terms, because they both have mass and charge and length and width. You can't do that with information and matter. Information doesn't have mass or charge or length in millimeters. Likewise, matter doesn't have bytes. You can't measure so much gold in so many bytes. It doesn't have redundancy, or fidelity, or any of the other descriptors we apply to information. This dearth of shared descriptors makes matter and information two separate domains of existence, which have to be discussed separately, in their own terms.

The gene is a package of information, not an object. The pattern of base pairs in a DNA molecule specifies the gene. But the DNA molecule is the medium, it's not the message. Maintaining this distinction between the medium and the message is absolutely indispensable to clarity of thought about evolution.

Just the fact that fifteen years ago I started using a computer may have had something to do with my ideas here. The constant process of transferring information from one physical medium to another and then being able to recover that same information in the original medium brings home the separability of information and matter. In biology, when you're talking about things like genes and genotypes and gene pools, you're talking about information, not physical objective reality. They're patterns.

I was also influenced by Dawkins' "meme" concept, which refers to cultural information that influences people's behavior. Memes, unlike genes, don't have a single, archival kind of medium. Consider the book Don Quixote: a stack of paper with ink marks on the pages, but you could put it on a CD or a tape and turn it into sound waves for blind people. No matter what medium it's in, it's always the same book, the same information. This is true of everything else in the cultural realm. It can be recorded in many different media, but it's the same meme no matter what medium it's recorded in.

In cultural evolution, obviously, the idea of a coffee cup or a table is something that persists. The coffee cups and tables don't persist, they recur as a result of the persistence of the information that tells people how to make coffee cups and tables. It's the same way in biology: hands and feet and noses and so on don't persist, they recur as a result of genetic instructions for making hands and feet and noses. It's the information that lasts and evolves. Obviously, it's because of the physical manifestations of the information that we know about the information. Dawkins has had trouble in convincing people, and this stems from his thinking of the gene as an object -- of emphasizing the importance of replication rather than of proliferation of information.

Until you've made the distinction between information and matter, discussions of levels of selection will be muddled. Comparing a gene with an individual, for instance, in discussions of levels of selection, is inappropriate, if by "individual" you mean a material object and by "gene" you mean a package of information. It should be "gene" and "genotype." You have to look at levels of selection in both of these domains, and realize what you're doing. Comparisons of levels of selection should be within the same domain.

Having made the domain distinction, you then go to levels, and you find that in the two domains the levels do not correspond exactly. As a general rule, if we restrict our attention to sexually reproducing populations, there are only two possible levels of selection in the informational -- or what I call the codical -- domain: the gene and the gene pool. Selection can operate on alternative genes within a population; selection can act on alternative gene pools in a biota. Both of these are evolutionary factors that can produce interesting effects.

In the material domain, on the other hand, selection can operate at the level of alternative individuals, in the usual sense of "individual," or on groups of individuals -- such things as insect colonies, or families whether they form elaborate colonies or not. These temporary groupings of individuals give rise to what the biologist David Sloan Wilson calls "trait-group selection," and also to selection between alternative populations. That's the physical basis for selection between gene pools. But the physical levels of selection below that level -- for instance, between competing colonies of the same species of social insects -- don't have a corresponding level in the codical domain. The events in the competition between insect colonies are recorded at the level of a gene. There are no sufficiently persistent genetic differences among colonies for effective selection in the codical domain. I believe David Wilson agrees with that. He's interested in selection among the interactors in the material domain.

The main messages of my 1966 book are now generally accepted. This would have been the case whether I wrote that book or not. The ideas would have prevailed by today, because people like Hamilton, Dawkins, Robert Trivers, and others were doing work at the same time, more or less, and if there hadn't been a single book in the midsixties to deal with the idea of levels of selection, I think one of those people probably would have written it. Dawkins' book The Selfish Gene is very much a case in point. It advanced things a lot further than mine did.

My lasting contribution will be for a clarification of the problems of the two domains and the levels of natural selection. I'll also be known as one of the people who first became interested in explaining why there is such a thing as sexual reproduction, and why it's so widespread.

In the future, breakthroughs in evolutionary biology may come in the field of paleontology. Fieldwork now going on will be recognized several decades from now as having provided extremely important information. People I've never heard of are out there digging, looking for pollen grains in lake sediments, or dusting off trilobites from Paleozoic shales. Other important insights will come from people working in traditionally unrelated fields -- for instance, on things like conflict between genomes. The most immediately enlightening and convincing work that's going on now is in explanations being advanced for things like genetic imprinting -- that is, the fact that in early development the activity of the gene depends upon whether it came from the mother or the father. I'm most involved in a recent publication by the biologist David Haig on genetic conflict in human pregnancy. This may not in fact be the clearest example of genetic imprinting, and certainly it isn't going to be the one most easy to work with, but it's work of this nature that's likely to get people thinking seriously about levels and domains of selection.

My recent work concerns what I call Darwinian medicine -- the general applicability of evolutionary ideas in medical research, practice, and education. It arose in conversations with Randolph Nesse, a medical doctor and professor at Ann Arbor. Another important factor for me was a paper by Paul Ewald in 1980.

Ewald started life as an ornithologist and got interested in medicine one day when he got sick. It was an intestinal pathogen that got him -- not quite as dramatic as Alfred Russel Wallace getting his inspirations during an attack of malaria. Paul started thinking about the evolutionary interaction between hosts and parasites. That led to his paper on how to use evolutionary ideas to interpret the observations one makes in infectious diseases -- the symptoms and signs seen in the host. It struck me that these were extremely important ideas, which should be tremendously useful in medicine.

I had already been thinking about senescence and life histories in general, and certainly senescence is a medical problem. From general population genetics I knew something about inherited disorders. These are quite different kinds of medical problems, but all of them are susceptible to evolutionary interpretations, in ways that it seems to me would benefit the practice of medicine. The more I got to thinking about it, and talking to Randy Nesse about it, the more I realized that there is no kind of medical problem for which the theory of natural selection will not be relevant, for curing or preventing a disease.

One of Paul's most important insights is that AIDS is probably not a new disease, in the sense of HIV being a new pathogen. What we're dealing with is a pathogen that has rapidly evolved a much higher level of virulence because of its environmental circumstances. It may have been an organism that, prior to two or three decades ago, was transmitted primarily from parent to offspring -- and maybe rarely between sex partners -- and therefore the evolutionary factors acting on its virulence necessarily kept it very nonvirulent. Individuals with this virus had to survive long enough to reproduce, or the virus wouldn't be transmitted.

Now, take people with this virus and move them into a completely different social situation, in which families are disrupted and men are being served mainly by prostitutes who are dealing with hundreds of men per year. You now have a situation in which the opportunity for the transmission of the disease to another individual no longer depends upon the long-term survival of the individual that has it. Therefore the restraints on its virulence are removed. Within an individual, the more virulent the strain, the better it will do, because the more virulent the strain the more of that particular virus there will be for transmission to the next individual. We've shifted the balance of selection on this virus from mainly between individuals -- between hosts -- to within hosts. Within hosts, there's normally selection for increased virulence. Suddenly the virulence of the HIV went way up. This is just one example. There are many, many examples of human activities that influence the evolution of virulence in our pathogens.

There are many other ways in which evolutionary ideas can be brought to bear on medicine -- for instance, in dealing with the mismatch between our evolved adaptations and the environment in which we now find ourselves. This mismatch is probably the main source of medical problems today.

In twenty or thirty years, medical students will be learning about natural selection, about things like balance between unfavorable mutations and selection. They will be learning about the evolution of virulence, of resistance to antibiotics by microorganisms, they will be learning about human archaeology, about Stone Age life, and the conditions in the Stone Age that essentially put the finishing touches on human nature as we now have it. These same ideas then will be informing the work of practitioners of medicine, and the interactions between doctor and patient. They'll be guiding the medical research establishment in a fundamental way, which isn't true today. At the rate things are going, this is inevitable. These ideas ought to reach the people who are in charge -- the doctors and the medical researchers -- but it's even more important that they reach college students, especially future medical students, and patients who go to the doctor. They'll have questions to ask that doctor, who will have to have answers. I hope this set of ideas produces a certain amount of bottom-up influence on the medical community, via students and patients. But I hope also that there's some top-down influence -- that it will be influencing the faculties in medical schools and the researchers on human disease.

Stephen Jay Gould: George Williams is a very important man. He's a quiet, gentle man who has had enormous influence on evolutionary theory since the 1960s, particularly through Adaptation and Natural Selection, in 1966, which was largely a critique of the false logic in forms of group selectionism then current and a defense of a fairly hard-edged strict Darwinian view based on individual selection. It was a methodological argument; he didn't say that group selection is impossible in principle, he just said that the arguments heretofore adduced were fallacious, and in that context one must begin (and here I don't agree with him philosophically) at the reduced, or lowest, level -- namely, Darwinian competition among organisms -- and not claim that selection is operating among any higher-level entities, like groups or species, unless you have to. If everything can be explained by organisms, let it go by organisms. Very influential book. He's always been at the forefront of theoretical clarity in the field.

Richard Dawkins: I have enormous regard for George Williams; I see him as an immensely wise figure in my field. And he has been -- belatedly -- enormously influential. The essence of The Selfish Gene, which came out in 1976, is contained in a couple of paragraphs in Williams' Adaptation and Natural Selection. I had not read it when I independently realized the same thing. His book has been a colossal influence for the good in the development of evolutionary theory and is now widely looked up to as such; it wasn't looked up to so much to begin with, but it's one of those (I think you call them) slow burners, whose influence develops rather late. I have huge regard for him.

Lynn Margulis: The only book of his I have read is Adaptation and Natural Selection. He makes a contribution in enlightening those who don't understand the basic idea of evolution. Most people don't understand the consequences of a simple fact: reproduction in mammals is obligatorily sexual -- although, for life generally, no intrinsic requirement for reproduction to be correlated with sex exists. But human behavior with its sexual reproductive imperatives can be understood as a function of the evolutionary past. People didn't connect evolutionary thinking and mammalian behavior. Williams is credited for recognizing the importance of reproduction in mammalian behavior. He's communicating a scientific truth in a resistent cultural milieu. The fact that he has few articulate predecessors enhances the importance of his work.

Steven Pinker: In my mind, George Williams is one of the most brilliant writers in the history of science. His 1966 book Adaptation and Natural Selection was way ahead of its time. In the first part of his argument, Williams was castigating contemporary biologists, pointing out that many of their explanations were shoddy because they were invoking natural selection as an explanation for every beneficial trait in sight. No matter what they looked at in an organism, they could come up with a story as to why it was to the benefit of the organism, the species, the ecosystem, the community, or the planet. Williams carefully dissected the concept of natural selection, delineating where it should and should not be applied. He noted that not everything that's adaptive is an adaptation in the technical sense. If a fox's feet tamp down a path in the snow, and that helps the fox get to the henhouse, it doesn't mean that the feet of the fox are an adaptation to tamping down snow.

The second part of Williams' argument is that even though natural selection can't explain every trait, there are some traits for which it's the only scientific explanation. These are the traits that show signs of complex adaptive design. The hand, the eye, the heart, the skin -- all are extremely improbable arrangements of matter. General laws of growth or the accidents of genetic drift couldn't possibly explain the precise arrangements of muscles and bones and tendons that give us a usable hand -- or, for that matter, explain why something like the apple has seeds inside it as opposed to something else. For any biological structure that looks as if it's engineered for a purpose, natural selection is the only known scientific explanation, because it's the only physical process that can result in complex systems that achieve some improbable goal.

Williams presented both halves of the argument. Some traits you shouldn't use natural selection for; some traits you have to use natural selection for. A lot of the work of biology, the day-to-day work, is examining complex features of organisms and trying to figure out whether they could have arisen as a by-product of something else or show clear-cut signs of having been designed for some purpose. Dawkins' book The Blind Watchmaker is in large part a lucid extension and popularization of both halves of Williams' original idea. Much in the writings of Stephen Jay Gould and his colleague Richard Lewontin emphasizes the first half and ignore the second half.

Niles Eldredge: I remember the English evolutionary geneticist John Maynard Smith remarking to me that he was astonished to find out that George Williams wasn't in our National Academy. Williams finally got elected in 1993. When I visited him in Stony Brook in the mid-1980s, he told me he was having a hard time getting grant support for his research, and I couldn't believe that. The two thoughts converged, because George really is the most important thinker in evolutionary biology in the United States since the 1959 Darwin centennial. It's astonishing that he hasn't gotten more credit and acclaim. He's a shy guy, but a very nice guy, and a very deep and a very careful thinker. I admire him tremendously, even though we've been arguing back and forth for years now.

His best book was the 1966 Adaptation and Natural Selection. I have more problems with Sex and Evolution. He has misunderstood some of the things we're trying to say, in a way that sometimes I find frustrating, shall we say. I don't think it's so much that he's being perverse as that I'm having a hard time getting through to George on certain things right now. But nonetheless the respect that we all have in the field for George is there. The guy is solid gold.

Daniel C. Dennett: As other people have said, George Williams is the Abraham Lincoln of his field. He has a wonderful, laconic, pithy way of talking, and he seems to be an amazingly astute and clearheaded thinker. Reading George Williams showed me for the first time how hard it is to be a good evolutionary thinker, and how easy it is to make simple mistakes. Again and again, Williams issues his pithy little correctives to otherwise superficially good ideas and just calmly, firmly, wipes them out. Then you realize that this is a harder game to play than any of us realize, and George plays it better than anybody else in the world.

His main contribution, of course, was blowing the whistle loud and clear on the idea of "good for the species." In his 1966 book, he saw that Wynne-Edwards' -- and others' -- ideas, which were very familiar fare in the textbooks and popular treatments of evolution, had to be wrong. This was a wake-up call. Williams pointed out that it's not "What's good for the species is good for the organism (or vice versa)"; it's "What's good for the gene is good for the gene." Usually, other things being equal, what's good for the gene is good for the organism -- and thus, you might say, for the species. But the gene is in the driver's seat.

Copyright © 1995 by John Brockman

Continues...


Excerpted from Third Culture by John Brockman Copyright © 1996 by John Brockman. Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

CONTENTS

INTRODUCTION

The Emerging Third Culture


The third culture consists of those scientists and other thinkers in the empirical world who, through their work and expository writing, are taking the place of the traditional intellectual in rendering visible the deeper meanings of our lives, redefining who and what we are.

PART ONE: THE EVOLUTIONARY IDEA

Chapter 1.

GEORGE C. WILLIAMS

"A Package of Information"


The gene is a package of information, not an object. The pattern of base pairs in a DNA molecule specifies the gene. But the DNA molecule is the medium, it's not the message. Maintaining this distinction between the medium and the message is absolutely indispensable to clarity of thought about evolution.

Chapter 2.

STEPHEN JAY GOULD

"The Pattern of Life's History"


There is no progress in evolution. The fact of evolutionary change through time doesn't represent progress as we know it. Progress isn't inevitable. Much of evolution is downward in terms of morphological complexity, rather than upward. We're not marching toward some greater thing.

Chapter 3.

RICHARD DAWKINS

"A Survival Machine"


It rapidly became clear to me that the most imaginative way of looking at evolution, and the most inspiring way of teaching it, was to say that it's all about the genes. It's the genes that, for their own good, are manipulating the bodies they ride about in. The individual organism is a survival machine for its genes.

Chapter 4.

BRIAN GOODWIN

"Biology Is Just a Dance"


The "new" biology is biology in the form of an exact science of complex systems concerned with dynamics and emergent order. Then everything in biology changes. Instead of the metaphors of conflict, competition, selfish genes, climbing peaks in fitness landscapes, what you get is evolution as a dance. It has no goal. As Stephen Jay Gould says, it has no purpose, no progress, no sense of direction. It's a dance through morphospace, the space of the forms of organisms.

Chapter 5.

STEVEN JONES

"Why Is There So Much Genetic Diversity?"


We have the beginnings of an answer as to why, in some places, one snail species is so variable, but we have no real idea why in any species anywhere at any time no two individuals are identical. That's an essential question of evolution. All others flow from that.

Chapter 6.

NILES ELDREDGE

"A Battle of Words"


Species are real entities, spatiotemporally bounded, and they're information entities. Other kinds of entities do things. Ecological populations, for example, have niches; they function. Species don't function that way. They don't do things; they are, instead, information repositories. A species is not like an organism at all, but it's nonetheless a kind of entity that plays an important role in the evolutionary process.

Chapter 7.

LYNN MARGULIS

"Gaia Is a Tough Bitch"


How did the eukaryotic cell appear? Probably it was an invasion of predators, at the outset. It may have started when one sort of squirming bacterium invaded another — seeking food, of course. But certain invasions evolved into truces; associations once ferocious became benign. When swimming bacterial would-be invaders took up residence inside their sluggish hosts, this joining of forces created a new whole that was, in effect, far greater than the sum of its parts: faster swimmers capable of moving huge quantities of genes evolved. Some of these newcomers were uniquely competent in the evolutionary struggle. Further bacterial associations were added on, as the modern cell evolved.

PART TWO: A COLLECTION OF KLUDGES

Chapter 8.

MARVIN MINSKY

"Smart Machines"


The brain is...a great jury-rigged combination of many gadgets to do different things, with additional gadgets to correct their deficiencies, and yet more accessories to intercept their various bugs and undesirable interactions — in short, a great mess of assorted mechanisms that barely manage to get the job done.

Chapter 9.

ROGER SCHANK

"Information Is Surprises"


Information is surprises. We all expect the world to work out in certain ways, but when it does, we're bored. What makes something worth knowing is organized around the concept of expectation failure. Scripts are interesting not when they work but when they fail.

Chapter 10.

DANIEL C. DENNETT

"Intuition Pumps"


The idea of consciousness as a virtual machine is a nice intuition pump. It takes a while to set up, because a lot of the jargon of artificial intelligence and computer science is unfamiliar to philosophers or other people. But if you have the patience to set some of these ideas up, then you can say, "Hey! Try thinking about the idea that what we have in our heads is software. It's a virtual machine, in the same way that a word processor is a virtual machine." Suddenly, bells start ringing, and people start seeing things from a slightly different perspective.

Chapter 11.

NICHOLAS HUMPHREY

"The Thick Moment"


What is it like to be ourselves? How can a piece of matter which is a human being be the basis for the experience each one of us recognizes as what it's like to be us? How can a human body and a human brain also be a human mind?

Chapter 12.

FRANCISCO VARELA

"The Emergent Self"


Why do emergent selves, virtual identities, pop up all over the place, creating worlds, whether at the mind/body level, the cellular level, or the transorganism level? This phenomenon is something so productive that it doesn't cease creating entirely new realms: life, mind, and societies. Yet these emergent selves are based on processes so shifty, so ungrounded, that we have an apparent paradox between the solidity of what appears to show up and its groundlessness. That, to me, is the key and eternal question.

Chapter 13.

STEVEN PINKER

"Language Is a Human Instinct"


I call language an "instinct," an admittedly quaint term for what other cognitive scientists have called a mental organ, a faculty, or a module. Language is a complex, specialized skill, which develops in the child spontaneously without conscious effort or formal instruction, is deployed without awareness of its underlying logic, is qualitatively the same in every individual, and is distinct from more general abilities to process information or behave intelligently.

Chapter 14.

ROGER PENROSE

"Consciousness Involves Noncomputable Ingredients"


My present view is that the brain isn't exactly a quantum computer. Quantum actions are important in the way the brain works, but the noncomputational actions occur at the bridge from the quantum to the classical level, and that bridge is beyond our present understanding of quantum mechanics.

PART THREE: QUESTIONS OF ORIGINS

Chapter 15.

MARTIN REES

"An Ensemble of Universes"


Cosmology is exciting to the public because it's clearly fundamental, and this is a rather special time in the subject. For the first time, it's become a part of mainstream science, and we can address questions about the origin of the universe.

Chapter 16.

ALAN GUTH

"A Universe in Your Backyard"


One of the most amazing features of the inflationary-universe model is that it allows the universe to evolve from something that's initially incredibly small. Something on the order of twenty pounds of matter is all it seems to take to start off a universe....It becomes very tempting to ask whether, in principle, it's possible to create a universe in the laboratory — or a universe in your backyard — by man-made processes.

Chapter 17.

LEE SMOLIN

"A Theory of the Whole Universe"


What is space and what is time? This is what the problem of quantum gravity is about. In general relativity, Einstein gave us not only a theory of gravity but a theory of what space and time are — a theory that overthrew the previous Newtonian conception of space and time. The problem of quantum gravity is how to combine the understanding of space and time we have from relativity theory with the quantum theory, which also tells us something essential and deep about nature.

Chapter 18.

PAUL DAVIES

"The Synthetic Path"


My personal belief is that biologists tend to be uncompromising and reductionistic because they're still feeling somewhat insecure with their basic dogma, whereas physicists have three hundred years of secure foundation for their subject, so they can afford to be a bit more freewheeling in their speculation about these complex systems.

PART FOUR: WHAT WAS DARWIN'S ALGORITHM?

Chapter 19.

MURRAY GELL-MANN

"Plectics"


To refer to the subject on which some of us now work as "complexity" seems to me to distort the nature of what we do, because the simplicity of the underlying rules is a critical feature of the whole enterprise. Therefore what I like to say is that the subject consists of the study of simplicity, complexity of various kinds, and complex adaptive systems, with some consideration of complex nonadaptive systems as well.

Chapter 20.

STUART KAUFFMAN

"Order for Free"


What kinds of complex systems can evolve by accumulation of successive useful variations? Does selection by itself achieve complex systems able to adapt? Are there lawful properties characterizing such complex systems? The overall answer may be that complex systems constructed so that they're on the boundary between order and chaos are those best able to adapt by mutation and selection.

Chapter 21.

CHRISTOPHER G. LANGTON

"A Dynamical Pattern"


Physics has largely been the science of necessity, uncovering the fundamental laws of nature and what must be true given those laws. Biology, on the other hand, is the science of the possible, investigating processes that are possible, given those fundamental laws, but not necessary. Biology is consequently much harder than physics but also infinitely richer in its potential, not just for understanding life and its history but for understanding the universe and its future. The past belongs to physics, but the future belongs to biology.

Chapter 22.

J. DOYNE FARMER

"The Second Law of Organization"


Many of us believe that self-organization is a general property —certainly of the universe, and even more generally of mathematical systems that might be called "complex adaptive systems." Complex adaptive systems have the property that if you run them — by just letting the mathematical variable of "time" go forward — they'll naturally progress from chaotic, disorganized, undifferentiated, independent states to organized, highly differentiated, and highly interdependent states.

PART FIVE: SOMETHING THAT GOES BEYOND OURSELVES

Chapter 23.

W. DANIEL HILLIS

"Close to the Singularity"


We're analogous to the single-celled organisms when they were turning into multicellular organisms. We're the amoebas, and we can't quite figure out what the hell this thing is that we're creating. We're right at that point of transition, and there's something coming along after us.

SELECTED READING

INDEX
From the B&N Reads Blog

Customer Reviews