Topological Insulators: Dirac Equation in Condensed Matters

Overview

Topological insulators are insulating in the bulk, but process metallic states present around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, the first of its kind on topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound...

See more details below
Hardcover (2013)
$106.11
BN.com price
(Save 17%)$129.00 List Price
Other sellers (Hardcover)
  • All (9) from $95.61   
  • New (8) from $95.61   
  • Used (1) from $163.67   
Sending request ...

Overview

Topological insulators are insulating in the bulk, but process metallic states present around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, the first of its kind on topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field.

This book is intended for researchers and graduate students working in the field of topological insulators and related areas.

Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China.

Read More Show Less

Product Details

  • ISBN-13: 9783642328572
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 1/31/2013
  • Series: Springer Series in Solid-State Sciences , #174
  • Edition description: 2013
  • Edition number: 1
  • Pages: 216
  • Product dimensions: 6.10 (w) x 9.40 (h) x 0.70 (d)

Meet the Author

Professor Shun-Qing Shen, an expert in the field of condensed matter physics, is distinguished for his research works on spintronics of semiconductors, quantum magnetism and orbital physics in transition metal oxides, and novel quantum states of condensed matters. He proposed the theory of topological Anderson insulator, spin transverse force, resonant spin Hall effect and the theory of phase separation in colossal magnetoresistive (CMR) materials. He proved the existence of antiferromagnetic long-range order and off-diagonal long-range order in itinerant electron systems.

Professor Shun-Qing Shen has been a professor of physics at The University of Hong Kong since July 2007. Professor Shen received his BS, MS, and PhD in theoretical physics from Fudan University in Shanghai. He was a postdoctorial fellow (1992 – 1995) in China Center of Advanced Science and Technology (CCAST), Beijing, Alexander von Humboldt fellow (1995 – 1997) in Max Planck Institute for Physics of Complex Systems, Dresden, Germany, and JSPS research fellow (1997) in Tokyo Institute of Technology, Japan. In December 1997 he joined Department of Physics, The University of Hong Kong. He was awarded Croucher Senior Research Fellowship (Croucher Prize) in 2010.

Read More Show Less

Table of Contents

Introduction.-Starting fromthe Dirac equation.- Minimal lattice model for topological insulator.- Topological invariants.- Topological phases in one dimension.- Quantum spin Hall effect.- Three dimensional topological insulators.- Impurities and defects in topological insulators.- Topological superconductors and superfluids.- Majorana fermions in topological insulators.- Topological Anderson Insulator.- Summary: Symmetry and Topological Classification.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)